
Return of the Rat: Biologically-Inspired Robotic 
Exploration and Navigation* 

 
 

Alejandra Barrera Ramírez   and   Alfredo Weitzenfeld Ridel 
Instituto Tecnológico Autónomo de México (ITAM) 

Computer Engineering Department  -  Robotics and CANNES Laboratories 
Río Hondo #1, Tizapán San Ángel, CP 01000, Mexico City, Mexico 

abarrera@itam.mx, alfredo@itam.mx
 
 

.Abstract – In this paper we present a biologically-
inspired robotic exploration and navigation model 
based on the neurophysiology of the rat hippocampus 
that allows a robot to find goals and return home 
autonomously by building a topological map of the 
environment. We present simulation and 
experimentation results from a T-maze tested and 
discuss future research. 

 
Index Terms – Affordances, mapping, path 

integration, rat hippocampus, reinforcement learning. 

I.  INTRODUCTION 

While trying to explain the ability of rats to solve spatial 
problems, Tolman argued in 1948 that rats should have a 
cognitive map in some part of their brain [2]. Then, in 
1978, O’Keefe and Nadel argued that such map was 
located in the hippocampus [3]. Experimental work has 
shown that there exist at least two distinct populations of 
neurons in the rat hippocampus known as place cells and 
head-direction cells. Place cells codify information about 
physical locations of the animal, while head-direction cells 
codify orientations of the animal’s head [4]. 

These studies on the rat brain have provided inspiration 
in developing alternative robotic navigation models to 
those based on classical approaches, such as metric and 
topological [1]. Examples of such navigation models based 
on the rat’s hippocampus neurophysiology are those by 
Burgess and O’Keefe [5], Touretzky and Redish [6], 
Balakrishnan, Bhatt and Honavar [7], Trullier and Meyer 
[8], Arleo and Gerstner [9], Gaussier, Revel, Banquet and 
Babeau [10], Guazzelli, Corbacho, Bota and Arbib [11], 
and recently Milford and Wyeth [12]. 

The work presented in this paper is based on a 
theoretical robotic navigation model developed by 
Guazzelli et al. [11]. We have extended and implemented 
this model in an actual robot, teaching the robot to find 
goals in a T-maze through motivation and reinforcement 
learning by building a topological map of the environment. 
In a previous paper [13] we documented the 
implementation of the model using the NSL simulation 
system [14] under both simulated and real world 
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environments. In this paper we extend our previous work 
to allow the robot to return autonomously to the departure 
location, thus fully automatizing the learning process. The 
paper is organized as follows: Section II describes the 
navigation model, Section III describes the process the 
robot follows to return home, Section IV describes the 
model implementation, Section V discusses the simulation 
and experimentation results, and Section VI presents 
conclusions and future work. 

II. THE ROBOTIC NAVIGATION MODEL 

Our model allows the rat to determine direction of 
movement and to build a map-based representation of the 
environment. Two sub-models carry out these activities: 
the Taxon-Affordances model (TAM) and the World 
Graph model (WG), respectively. Both sub-models are 
composed of layers of neurons that implement Hebbian 
[15] and reinforcement learning [16] in order to allow the 
expression of goal-oriented behavior. The following 
sections describe the sub-models and their integration. 

A. Taxon-Affordances Model (TAM) 

The term affordances, adopted from Gibson [17], refers 
to the sensory information that an animal uses to interact 
with the environment without the need to recognize 
objects. On the other hand, the term taxon refers to the 
notion of affordances for movement, representing all 
possible motor actions that a rat can execute through the 
immediate sensing of its environment; e.g., visual sighting 
of a corridor – go straight ahead; sensed branches in a 
maze – turn. 

Affordances for movement are coded in a linear array of 
cells called an affordances perceptual schema (APS) that 
represents possible turns from -180o to +180o. Fig. 1 shows 
the information picked up by the APS when the rat is in the 
center of an eight-arm radial maze. 

 

 
 

Fig. 1. Affordances perceptual schema when the rat is in the center of an 
eight-arm radial maze. The rat is able to sense eight different visible arms 
and eight different affordances (nine if we consider that -180o and +180o 
are represented separately). Each peak of activity represents a different 
affordance. The leftmost peak codes turning -180o and the rightmost peak 
codes turning +180o. The remaining peaks of activity code turns between 
-180o and +180o in 45o intervals. 
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Determination of the affordances for movement is based 
on a local coordinate system that is relative to the rat’s 
head, as shown in Fig. 4(a). 

Fig. 2 shows the different layers that compose TAM. 
The APS sends its output to the affordances feature 
detector layer, a layer of neurons whose activation 
constitutes a pattern that represents the group of 
affordances available for the rat at the current time. The 
activity pattern generated over the affordances feature 
detector layer is stored within a specific unit in the 
affordances state layer. TAM is able to associate 
expectations of future reward to specific affordances states 
in order to allow the expression of goal-oriented behavior. 
To do this, the model incorporates an egocentric 
motivational schema and a reinforcement learning 
process that will be described in section C. The egocentric 
motivational schema sends the expectations of future 
reward associated with the current affordances state to the 
action selection schema, the module that computes the 
choice of correct affordance; i.e., the one that leads the 
animal to the goal. 

B. The World Graph Model (WG) 

The WG model is composed mainly of a place cell layer 
and a world graph layer. Place cell activity is influenced by 
path integration information. 

Path integration describes the process by which signals 
generated during locomotion (kinesthetic information) 
allow the animal to update the position of its point of 
departure (an environmental anchor) each time it moves in 
relation to its current position. In this way, path integration 
allows the animal to return home. As can be seen in Fig. 3, 
the WG model includes a path integration module 
composed of a dynamic remapping layer defined as a 
two-dimensional perceptual schema representing the 
particular environment and the anchor coordinates, and a 
path integration feature detector layer where the 
activation of its neurons constitutes a pattern of kinesthetic 
information that is the input to the place cell layer (PCL). 
The pattern of activity generated in this layer represents a 
single place or location in the environment. 

The world graph is implemented in the WG model by 
the world graph layer (WGL), whose nodes are created 
on demand. 

 

 
Fig. 2. Assemblage of TAM components. 

Every unit in PCL is connected to every node in WGL. 
Each WGL node can store eight different activity patterns, 
one for each direction, assuming that the animal can orient 
itself in eight directions and can experiment different 
views of the same place. The creation of nodes in the WGL 
is modulated by the activation of distinct affordances states 
in TAM and by the presence of a PCL activity pattern not 
similar to a previously stored one. The arcs in the graph are 
represented by links between two WGL nodes, and are 
associated with the orientation of the rat’s head when the 
animal goes from one node to the next one. In the WG 
model the determination of the direction of the rat’s head is 
based on a global coordinate system, which is relative to 
an environmental anchor that corresponds to the departure 
location in the exploration process. Fig. 4(b) shows this 
global coordinate system. 

The WG model incorporates an allocentric 
motivational schema that associates place information to 
expectations of future reward in order to influence the 
selection of the next action. The reinforcement learning 
process is carried out similarly to that in TAM. The 
expectations of future reward are sent to the action 
selection schema to contribute to the selection of the next 
direction of movement. 

C. Motivation and Learning 

The animal’s motivation is related to its internal need to 
eat, which is represented in the model as the hunger drive. 
The hunger drive is increased by the presence of food and 
reduced by the ingestion of it. 

 

 
 

Fig. 3. The WG model. FDL stands for Feature Detector Layer. 
 

                 
 

Fig. 4. (a) Local coordinate system used in TAM to determine the relative 
affordances for movement. (b) Global coordinate system used in WG to 
build the map-based representation of the external environment, a T-
maze, for example. This global system is relative to the departure location 
(the base of the “T” in the figure). 



The model computes the hunger value (hv) at every rat 
step using the formula 
hv = (phv + α * d – r * phv) + i * d,                                (1) 
where phv is the previous hunger value, α is a constant, d 
is the difference between the maximum value that the drive 
can take and its previous value, r is a reduction constant 
registered when the rat eats, and i is an incentive constant 
registered when the rat perceives the food. 

The amount of reward or reinforcement (rv) the animal 
gets by the presence of food is calculated using the formula 
rv = (phv / mhv) * r,                                                         (2) 
where mhv is the maximum hunger value. 

In order to model the reinforcement learning in TAM, 
every node in the affordances state layer has an adaptive-
critic architecture composed of eight actors and an 
adaptive-critic unit. This unit represents the global 
expectation of future reward of an affordances state, while 
the actors are associated to the eight different directions 
the animal can point to, representing in this way, the 
particular expectation of the rat to find reward if it moves 
in the affordance that corresponds to that actor. 

Beginning a model iteration, reinforcement is initiated 
by updating the actor unit’s eligibility trace of the current 
node associated with the last turn the animal had to make 
to orient itself to its current direction. The update can be an 
increase (positive reinforcement) if the last movement 
allowed the perception of food, or a decrease (negative 
reinforcement) if it did not. The adaptive-critic unit’s 
eligibility trace of the current node is increased or 
decreased in the same way. After the creation or activation 
of a node, the reinforcement process is carried out for all 
the nodes in the layer, updating the weights of the 
adaptive-critic unit and of the eight actor units. The 
equation used to update those weights (w) at time t+1 is: 
w(t+1) = w(t) + β * e(t) * rh(t),                                       (3) 
where β is the learning rate, e(t) is the eligibility trace of 
the adaptive-critic unit or the eligibility trace of the actor 
unit, and rh(t) represents an adjusted reward value that 
considers the prediction of expectations of future reward at 
time t and at time t+1. 

In the WG model the reinforcement learning process is 
carried out similarly to the one done by TAM using (3). If 
the place visited by the rat after the last turn allowed it to 
perceive food, the reinforcement is positive, otherwise it is 
negative. 

D. The integrated TAM-WG model 

The integrated model, called TAM-WG, combines 
TAM and WG models, as shown in Fig. 5. The decision to 
turn to a certain angle is given by a winner-take-all process 
performed over the integration of activation fields 
produced by the available affordances (A), the drive 
relevant stimuli (F), the expectation of reward derived 
from TAM (RT), the expectation of reward derived form 
the WG model (RW), and a curiosity level (CL); RT and 
RW contain associated noise factors n and m, respectively. 
In this way, the total input I to the action selection module 
becomes 
I(i,t)=A(i,t)+F(i,t)+(RT(i,t)+n)+(RW(i,t)+m)+CL(i,t),   (4) 

 
Fig. 5. Integrated TAM-WG model of rat navigation. 

 

where i varies from 1 to N, the length of the population of 
cells (80) in the linear arrays used to represent the 
perceptual schemas, while t represents the time variable. 

Through CL, the WG model considers the fact that the 
animal may go to places that are not yet represented in the 
world map. In this way, if the rat is not motivated to go 
towards a previously experienced place, it will tend to 
choose, based on its curiosity level, an affordance that 
leads to a place not yet represented in the map. 

III.  READING THE MAP TO RETURN HOME 

Consider, for example, the case in which the rat is 
exploring an environment like the one shown in Fig. 9(a). 
Suppose the rat goes form location “h” to location “a,” 
building the map presented in Fig. 9(b). Every node in this 
map is pointed by just one arc, except for node 1, 
corresponding to the departure location (“h”). Node 2 
represents locations “g,” “f” and “e”. Node 3 corresponds 
to location “d.” Node 4 represents locations “c” and “b,” 
and node 5 corresponds to the goal location (“a”). 

When the rat reaches location “a,” node 5 is active and 
the return process begins. Initially, the rat’s direction is set 
to the opposite direction’s value of the arc pointing to the 
active node. A new APS is defined and established as both 
the current and the previous affordances state (AS). As 
long as the active node is pointed by an arc, the rat 
processes the following algorithm: 

1. If the current AS is different from the previous one, 
a. the node pointed to the active one is set as the 

new active node;  
b. the rat’s direction is set to the opposite 

direction’s value of the arc pointing to the 
active node. 

2. The rat moves and determines the new APS. 
3. The previous AS is set to the value of the current 

AS, and the current AS is set to the new APS. 
We will refer to this algorithm in Section V (A), where 

we explain in detail the return process in the T-maze used 
to test the model. 

IV.  MODEL IMPLEMENTATION 

The robotic navigation model was designed and 
implemented using the NSL simulation system [14]. The 
model was decomposed into different modules as shown in 
Fig. 6. In general, the input to the TAM-WG model is 



composed of the current direction of the rat’s head (chA), 
the current rat’s view (cV), and the distance (dF) and angle 
(tF) to the food, if it is visible. 

The Drive module computes the hunger value and the 
reward value using (1) and (2). The AffordancesPS 
module generates the current APS. The AffordancesFDL 
and the AffordancesSL modules correspond to the 
affordances feature detector layer and the affordances state 
layer of TAM. Considering the WG model, on the other 
hand, path integration is carried out by the DynamicRL 
and PathIntFDL modules. The kinesthetic information is 
the input to the PlaceCellL module that corresponds to the 
place cell layer of the model. The WorldGraphL module 
corresponds to the world graph layer representing the 
topological map of the environment. The MotivationalS 
module computes the input to the action selection schema 
as indicated in (4). Finally, the output of the TAM-WG 
model is generated by the ActionSelectionS module that 
determines the next direction of the rat’s head (nhA), the 
angle by which it has to turn to point to this direction (aT), 
and the displacement the rat has to undergo to reach its 
next position (d). 

The TAM-WG model can interact with a virtual or real 
environment. The model takes the information that it 
requires from a Visual Processing (VP) module that in 
turn takes as input the image perceived by either a 
simulated rat or by a real robot. 

The VP module computes the distance and angle to the 
food (dF, tF), using the amount of different colored pixels 
found in the current image. Note that we do a color based 
visual processing. The amounts of pixels (cV) are also 
needed by the AffordancesPS module to compute the 
current APS. The VP module sends the head orientation of 
the robot (chA) to several modules of the TAM-WG 
model, as shown in Fig. 6. The output generated by the 
ActionSelectionS module of TAM-WG (nhA, aT, d) is sent 
to a Motor Control module so that the virtual or real robot 
is translated and/or rotated accordingly, affecting the next 
image that the rat will perceive as well as the current head 
direction considered by the VP module. 

 

 
 

Fig. 6. The modules of the TAM-WG model interacting with a virtual or 
real environment. 

V.  SIMULATION AND EXPERIMENTATION 

The experimental environment used to test our model 
consists of a T-maze. The simulated rat navigates from the 
base of the “T” to either one of the two arm extremes, and 
then it returns to the departure location autonomously. This 
process is repeated in every experiment’s trial. 

The rat’s behavior goes through two phases during each 
trial: training and testing. The objective of the first phase 
is to train the rat to turn to the left arm motivated by the 
presence of food at the end of the corridor until the rat 
learns to turn left to that arm. In the testing phase, the food 
is moved to the end of the right arm in order to test that the 
rat can unlearn the previous food location while learning 
the new one. This experiment is inspired on the reversal 
task documented by O’Keefe in [18]. During the testing 
phase of the experiment, O’Keefe also moved the food to 
the right arm, but after some trials in the T-maze, he 
combined them with trials in an eight-arm radial maze so 
that the rat may have eight possible arms to visit in some 
cases and two arms in other cases. The current model 
described in this paper considers only the T-maze case. 

A. Simulation Results 

Fig. 7 presents the virtual environment used to simulate 
the model in the T-maze. At each step of the experiment, 
the simulated rat takes three pictures of the environment: 
the first one in the current head direction, the second one 
90º to the right and the third one 90º to the left. 

During the experiment, the simulated rat builds the 
world graph map, as can be seen in Fig. 8(a). The base of 
the T-maze is represented in the map by three nodes. From 
south to north, the first node corresponds to the place of 
departure; the second one represents the locations between 
the place of departure and the T junction, and the third 
node corresponds to the location at the T junction where 
the rat decides to turn left or right. Each arm of the T-maze 
is represented by two nodes in the map. The far most node 
corresponds to the end of the corridor, while the previous 
one corresponds to locations between the junction and the 
end. 

During the training phase, the food is placed in the 
leftmost location of the maze. When the rat reaches the T 
junction, the sight of food makes the rat decide to turn left. 
The rat repeats this process for 10 trials. After that, it has 
learnt the position of food (see Table I). 

When the testing phase begins, the food is moved to the 
right arm. Since the rat is not motivated to turn left 
anymore, its curiosity level for the other arm, not yet 
represented in the map, makes the rat explore it. In the 
following 8 trials, the rat goes through an unlearning 
process, where the expectations of future reward in TAM 
and in the WG model for the left arm will decrease 
continuously. During this process, the rat turns to the left 
during every trial. Finally, in trail number 20 of the 
experiment the rat decides to turn right in order to ingest 
the food, starting a relearning process. In the beginning of 
this process, the expectations of future reward for the right 
arm are smaller than the combined curiosity and noise 



levels so that the rat will tend to choose the left or right 
arm randomly. The relearning process lasts 12 trials. From 
trail number 32 the expectations of reward for the right 
arm are the dominant influence in the behavior of the rat, 
making it choose the right corridor consistently. Fig. 8(b, 
c, d) shows images of the rat’s behavior. 

Every time the rat reaches either one of the two arm 
extremes it proceeds with the process of returning home, 
following the algorithm described in Section III. Consider 
now that it starts returning from the left arm, as shown in 
Fig. 9(a). At this moment, the rat is at location “a” and 
map node 5 is active, see Fig. 9(b).  

The rat’s direction is set to 0o (the opposite direction’s 
value of the arc pointed to node 5, i.e. 180o); a new APS is 
defined and set to [0o] (i.e. the rat can just move ahead); 
the current and the previous AS are set to [0o]. 

As the active node is pointed by an arc and the current 
AS is equal to the previous one, the rat moves to location 
“b” and computes the new APS [-180o, 0o, +180o] (i.e. the 
rat can move ahead or return). The previous AS is set to 
[0o] and the current AS is set to [-180o, 0o, +180o]. 

As the current AS is different from the previous one, the 
active node is set to node 4, the rat’s direction is set to 0o 
(the opposite direction’s value of the arc pointed to node 4, 
i.e. 180o) the rat moves to location “c” and determines the 
new APS [-180o, 0o, +180o]. The previous AS is set to [-
180o, 0o, +180o] and the current AS is set to [-180o, 0o, 
+180o].  

The rat moves to location “d” and computes the new 
APS [-180o, 0o, +90o, +180o] (i.e. the rat can move ahead, 
return or turn 90o to the right); the active node is set to 
node 3, the rat orients to 270o (the opposite direction’s 
value of the arc pointed to node 3, i.e. 90o), moves to 
location “e” and computes a new APS [-180o, 0o, +180o].  

The active node is set to node 2, the rat orients to 270o 
(the opposite direction’s value of the arc pointed to node 2, 
i.e. 90o), moves to location “f” and computes a new APS [-
180o, 0o, +180o]. The rat moves to location “g” and 
computes the new APS [-180o, 0o, +180o]. The rat moves 
to location “h” and computes the new APS [-180o, +180o] 
(i.e. the rat can just return). The active node is set to node 
1. As this node is not pointed by any arc, the rat has 
reached the departure location and now it is ready to begin 
a new trial of the experiment. 

 

 
Fig. 7. The virtual environment used to test the navigation model. The left 
panel shows the current rat’s view (robot’s camera), while the right one 
presents an aerial view of the maze (aerial camera). 

 
TABLE I. 

THE PERFORMANCE OF THE RAT DURING THE T-MAZE EXPERIMENT 
Trial # Chosen arm Phase Process 
1 – 10 Left Training Learning 

11 Right Testing Curiosity drive 
12 – 19 Left Testing Unlearning 
20 – 31 Left or right randomly Testing Relearning 
32 – … Right Testing Relearning 

 
 
 
 
 

 (a)                         (b)                         (c)                        (d)  
Fig. 8. (a) The map of the T-maze. The bigger circles represent the nodes 
and the little half circles between nodes represent arc direction. The node 
marked with an “X” indicates the current node in the map. (b) A typical 
trial in the training phase: the food is at the leftmost place of the “T” and 
the rat is approaching it. (c) A typical trial during the unlearning process: 
the food was moved to the right arm and the rat is approaching the end of 
the opposite corridor. (d) A typical trial during the relearning process: the 
food is at the right arm and the rat is approaching it. 

 

 
 

Fig. 9. (a) The path the rat follows to return home in the T-maze. (b) The 
map read by the rat to return home. Numbers from 1 to 5 identify nodes, 
while numerical arc label corresponds to rat’s head direction. 

B. Robot Experimentation Results 

We tested the model using a Sony AIBO ERS-210 4-
legged robot having a local camera. The experiment used 
to test the model in the real world was the same as the one 
used in the virtual world. After each trial the robot read the 
topological map in order to return home autonomously. 
The robot took three pictures after each step, same as the 
simulated rat. 

A T-maze was built with a width and height of 150 cm, 
consisting of three corridors having 50 cm of distance 
between walls. The walls were painted with different 
colors so that affordances could be easily computed by the 
robot. During the experiment, the robot built the same 
world map shown in Fig. 8(a). 

The robot’s behavior was consistent with the simulated 
experiment. The robot was trained for 10 trials, and during 
the testing phase, the length of the unlearning and the 
relearning processes presents minor variations in relation 
with the performance shown in Table I. Fig. 10(a, b, c, d) 
shows pictures of the robot’s behavior during the 
experiment. A “shortened” video can be found in our web 
site [19]. 

VI.  DISCUSSION 

In this paper we have presented an extended version of 
a robotic navigation model based on the physiology of the 
rat’s brain. We have shown that both the simulated rat and 
the real robot are able to explore a T-maze, to learn the 
locations of food, to build a map of the environment and to 
read the map to return to its departure location 
autonomously. It is important to say that the whole 
experiment used to test the model is performed by the rat 
or robot autonomously. In a previous version of the model 
we had to move the robot manually to the departure 
location at the beginning of every trial. 



 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 10. (a) A typical trial in the training phase: the food is at left (L) and 
the robot is approaching it. (b) The robot is returning from the left arm. 
(c) A typical trial during the unlearning process: the food is at right (R) 
and the robot is approaching the end of the opposite corridor (L). (d) A 
typical trial during the relearning process: the food is at right and the 
robot is approaching it. 
 

In terms of learning, our simulation and 
experimentation results matched qualitatively with those 
obtained by O’Keefe. After having learnt to turn to a 
specific arm of the T-maze, our rat, like O’Keefe’s real rat, 
consistently chose the side to which it was trained. 
However, when the location of food was changed, the rat 
solved the T-maze by learning to switch gradually to the 
opposite arm at the maze junction. 

In order to simplify the experimental environment we 
used color recognition as the basis for object identification 
in computing affordances although we know that rats have 
a more sophisticated object recognition scheme. We 
assigned different colors to different objects of interest, 
such as walls and food. We had to deal with illumination 
problems in getting the right calibrations assigned to the 
different colors in the real robot experiment. Additionally, 
the AIBO robot does not always walk in a straight manner 
or perceive a consistent number of colored pixels leading 
to variations in object distance calculations and 
recognitions. Sometimes, this affected not only the 
moment when the robot decided to turn at the junction, but 
also made it turn incorrectly. Furthermore, since the walls 
were made of cardboard, the robot was able to push the 
walls around. 

In our experiment the rat had only one way to reach 
the goal location because the departure location was the 
same in every trial. In this way, every node in the 
topological map had at most one arc pointing to it, which 
simplified considerably the process to return home by just 
reading the map. However, if we consider that the rat can 
reach the goal location from two different departure 
locations in different trials of the experiment there will be 
at least one node of the map pointed by two arcs and 
therefore the reading of the map will need to be extended 
in enabling the rat to return home. Consequently, at this 
point we are considering to extend the model to use the 
path integration module to implement the return home 
process. For the nodes pointed by at least two other nodes, 
we will compare the dynamic remapping perceptual 
schema (DRps) associated to each of these nodes with the 

DRps associated to the location of departure. The most 
similar DRps will indicate the node that must be activated 
to eventually reach the departure location. 

(a) (b) 

Some other extensions that we plan to implement 
include the use of the model in the exploration and 
mapping of more complex mazes and less structured 
environments with more sophisticated object recognition. 
We also would like to use spatial landmarks for guiding rat 
navigation. Finally, it should be emphasized that the 
motivation behind this work is the quest for inspiration 
from animal neurophysiology in efficiently solving spatial 
problems, as in the case of rats, where they have shown 
advanced learning capabilities that we expect will lead to 
more advanced robotic navigation models.  (c) (d) 
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