

1-4244-0537-8/06/$20.00 ©2006 IEEE

Abstract—The paper presents a swarm model inspired in ant

colonies where ants perform different tasks. The model
emphasizes explorer and worker ants responsible for food search
and bringing food back to the nest, respectively. The model is
based on ACO – Ant Colony Optimization providing a shortest
path algorithm during route exploration. Results from ant colony
model simulations are presented and contrasted.

Keywords—Ant colony, multi-agent systems, behavior
modeling.

I. INTRODUCTION

ANT COLONY OPTIMIZATION (ACO) is an intelligent colony
algorithm inspired by swarm behavior in real ants [1].
Extensive work has been done based on swarm studies
producing a number of models and corresponding applications
intended to solve optimization problems such as routing in
telecommunications and the traveling salesman or postman
problem in which an optimal route must be calculated to
deliver packets or letters in different locations.

Swarms define groups or teams of agents that share a
common goal. Team members coordinate behaviors by
adapting cognitive processes to their own perceptions (input
sensing) and communications, direct or indirect, with other
team members [2].

The ant is the insect that best represents the concept of
swarm intelligence providing inspirations to distributed
problem solving. Originally, swarm studies were inspired by
biological social behaviors in insects such as termites, wasps
or ants. Skills shown by swarms seem to exceed skills shown
by individual agents. Thus intelligent swarms display
intelligent group emergent behavior even if individual
members are not considered themselves intelligent. In many
such biological studies, high level group behavior is achieved
by a small set of simple low level interactions among
individuals and their environment.

Among the many properties that can be found in an
Intelligent Colony it is important to emphasize:
• Distribution. A colony is distributed, i.e., there does

not exist a central control entity or a central source of
information.

• Parallelism. Colony members may process in parallel
improving overall task performance. If tasks can be
further subdivided benefits are even larger.

• Robustness. Ants or agents in the colony may fail and
even die without affecting the overall task. This is due
to redundancy where agents can adapt to changes in the
environment including varying number of agents.

• Modularity. The problem can be analyzed by parts
such as by specific behaviors performed by colony
members.

• Scalability. Solutions to simpler problems can be
extended to larger ones.

• Autonomy. Colony individuals can sense and modify
environments.

II. ANT COLONY OPTIMIZATION
An ant colony consists of a complex social structure in

which each ant type has its own functions to do in the rest if
its life [3]. Ants in the colony include a hierarchical
organization:
• Queen ant responsible for laying eggs for future colony

members.
• Soldier ants take care of the whole colony defending

the nest from other insects, including ants belonging to
other colonies.

• Explorer ants look for food leaving pheromone traces
in their path.

• Worker ants follow pheromone path left by explorers
ants.

There exist many ant-based algorithms, nevertheless the
most important one is ACO algorithm. ACO is inspired by the
experiment described in Figure 1. An ant colony has access to
a food source through a bridge which has two paths, one
longer than the other. After certain period of time, most of the
ants will end up going through the shortest path. Furthermore,
the probability of choosing this shortest path increases in
proportion to the difference between the shorter and longer
path distances. Ants have the ability to modify the
environment they explore by leaving tracks of pheromone on
the soil. In a decision point (path bifurcation) the probability
of selecting one particular path is based in the quantity of
pheromone they sense on each path. Ants choose the shortest
path by following paths marked by other paths that have got to
the food source and back to the nest in the least amount of
time. Followings ants sense more pheromone in the path
increasing the probability for the next ant choosing the same
shortest path.

Nest Food

Fig. 1. Bridge between nest and food source.

Víctor Soto Hernández and Alfredo Weitzenfeld, Senior Member, IEEE

Ant Colony Algorithm for Swarm Systems

In the ACO algorithm the main task is for each ant to find

the shortest path between a source node s and a destination
node d as highlighted in blue and shown in Figure 2. In these
problems route length is computed by minimizing the number
of hops the ant has to take.

Fig. 2. Optimal route of length two from source node s to destination node d.

For each arc i,j that interconnects nodes i and j in the graph

we define a variable τi,j representing the artificial pheromone
or pheromone trail. This trail is written and read by each ant.
The quantity of pheromone that ants leave in the explored
surface is proportional to the utility of each arc estimated by
each ant. The probability of ant k at node i of moving to node j
is represented by ki,j. Equation 1 describes the probability
calculation, where node j belongs to the set N containing all
one-step neighbors of node i.

⎪
⎪
⎩

⎪⎪
⎨

⎧

∉

∈
= ∑

∈
k
i

k
i

Na
ai

ji

k
ji

Njif

Njif
p

k
i

0

,

,

,
τ

τ

 (1)

If we consider an ant located at node i with five

neighboring nodes f, j, k, l, m, and n, then an arc that connects
node i with the new nodes an artificial pheromone value τ as
shown in Figure 4.

Fig. 3. Artificial pheromone values for arcs connecting node i with five
neighboring nodes f, j, k, l, m, and n.

The five neighboring nodes f, j, k, l, m, and n, correspond to
the five neighboring cells in a two dimensional grid as shown
in Figure 5. Note that only the front and side cells are
considered as next moving steps.

Node
i

f j

l

n m

Fig. 4. Neighboring cells f, j, k, l, m, and n for node i.

The probability of ant k moving from node i to node j in

Figures 3 and 4 is described by equation 2.

∑
∈

=

iNa
ai

jik
jip

,

,
, τ

τ
 (2)

In this algorithm ants update traces by ∆τ pheromone after

each step. After a period of time t+1, the amount of
pheromone at a particular point is described by equation 3,

 τi,j(t+1)= τi,j(t) + ∆τ (3)

According to this rule, an ant using arc i,j will increase the

probability of subsequent ants of choosing the same path. The
algorithm requires selecting an appropriate value for ∆τ.
There are two ways of updating the pheromone trail, a
constant trace and variable trace.

Constant trace. In the simplest case and similarly to real
ants, pheromone update ∆τ is kept constant all the time, i.e.
same values are used for every arc the ant travels. The shortest
path is computed by differential path length, i.e. shorter paths
are computed by stronger pheromone concentrations. This
occurs since ants will strengthen shorter paths by leaving
pheromone traces more often than in longer paths. Thus, the
probability of ants choosing the shortest path is incrementally
increased.

Variable trace. A more complex way of updating
pheromone trail sets ∆τ dependent on path length. A
pheromone trace will be computed by a variable trace function
∆τ = 1/Lk, where Lk is the length of the path found by ant k. If
a path is shorter then the amount of pheromone trace will be
higher. To avoid a quick convergence a pheromone
evaporation mechanism is included. Thus, the intensity of
pheromone decreases improving the probability of exploring
new routes. In general, pheromone evaporation is important in
artificial ants since they offer a learning mechanism for newer
policies to forget bad decisions made in the past.

III. BEHAVIOR MODEL
In order to simulate an ant colony we established a set of

basic behavior objectives and rules:
• The ant colony goal is to find a route from the nest to a

food source and vice versa, while storing the food in

Node
i

Node
f

l

n

j m
Node

Node
Node

Node

τi,j

τi,f

τi,l τi,m

τi,n

the nest as quick as possible.
• The ant colony will be conformed by two types of ants:

explorers and workers.
• Explorer ants search for a path from nest to food

source. Food gathered is taken back to the nest using
the same path.

• Worker ants follow one of the paths discovered by
explorer ants.

• After some time most of the workers should follow a
single unique path from nest to food source. It must be
one of the shortest paths found by the explorers.

• Communication among ants is limited to pheromone
traces indirect laid on the exploring surface.

In the next two sections we describe behaviors for

explorer and worker ants. There are some similarities
between the two.

A. Explorer Ants
The Explorer ant life cycle is described as follows:

1. The explorer ant gets out of the nest walking in an

arbitrary path in search of food.
2. During the search the explorer ant modifies the

environment by laying pheromone traces on the soil in
order to attract other explorers to its route.

3. When food is discovered the explorer ant takes some
and returns to the nest following the same path it used
to get there.

4. Each explorer can repeat the search twice to avoid
saturation of ants in the exploring surface.

The explorer behavior states are shown in Figure 5 and
described in more detail as follows:
 Exploring. Before the explorer leaves the nest, it senses the
quantity of pheromone in each node (cell) around. The next
cell is chosen by means of the probabilistic rule previously
explained in the ACO algorithm. When the ant moves to the
next cell, it calculates again the probability and moves to the
following cell and so on.
 Coming back to nest. When a food source is discovered,
the explorer takes a portion of food and returns to the nest
using the same path back. The state ends when the nest is
perceived.
 Using path. The explorer ant searches for food again
similarly to Exploring state. The state ends when the nest is
perceived.

Returning. The explorer ant returns to the nest using the
same previous path. This state is very similar to Coming back
to nest state. The difference is that the Returning state ends
when either the explorer finds the nest and goes again to the
food source, so next state would be Using path, or the
explorer has already used the path n times terminating in
Death state.
 Returning without food. If the ant has explored for an
extensive period of time without finding any food, it returns to
the nest using the learnt path and terminating in Death state.

Death. In this state explorers stop their search, i.e.
explorations ends.

Coming back
to nest

Exploring

Death

Food sensed

Nest sensed

Returning
without food

Maximum search

Using path

Returning

Food sensed Nest sensed

Nest sensed

Nest sensed n times

Fig. 5. Explorer ant behavior described by a state machine comprising
Exploring, Coming back to nest, Using path, Returning, Returning without
food and Death.

B. Worker Ants
The Worker ant life cycle is described as follows:

1. The worker ant gets out the nest to bring food back to

the nest.
2. It must follow one of the routes discovered by the

explorers.
3. When a worker has got to the food nest it brings the

food back to the nest using the same path.
4. Workers choose the shortest routes from the different

routes discovered by the explorers.
5. Workers also affect the environment so other workers

can follow the same shortest route.

 The worker behavior states are shown in Figure 6 and
described in more detail as follows:

Birth. A worker ant chooses from one of the routes
explorers discovered. The decision is based on the
probabilistic rule defined by the ACO algorithm. Each route is
assigned a probability based on the corresponding pheromone
value. For example if route A has a greater pheromone value
than route B, then route A will have a grater probability of
being selected by worker ants.

Using route. Worker follows to the route to the food source
previously chosen. This sate ends when the food is sensed.

Returning. This state is similar to Returning state for
explorers ants. The main difference is that a worker ant can
travel through different paths. The state ends when the worker
arrives to the nest.

New route. Each worker ant can choose from any route
discovered by the explorers. Workers also update pheromone
traces for the traveled route.

 Death. In this state workers stop bringing back food, i.e.
work ends.

Birth

Using route

Returning

New route

Death

Elected route

Food sensed

Nest sensedElected route

Enough food

Fig. 6. Worker ant behavior described by a state machine comprising Birth,
Using route, Returning, New route and Death.

IV. SIMULATION SYSTEM
The ACO algorithm and behavior model described in

sections II and III were simulated using the Swarm system [4].
Swarm is a software platform for adaptive multi-agent system
simulation with special emphasis on ant colonies type of
models. The main objective of this system is to model and
simulate large numbers of computational objects or agents
implementing simple behaviors. The simulation system
involves specifying and implementing a Behavior and
Graphic Display modules as described in the following
sections.

A. Behavior Module
In the Behavior Module we specified a special object class

called Ant where we defined all behavior states. The Ant class
includes attributes corresponding to ant localization in the
simulated world. A direct mapping between behaviors and
functions was done to implement each state. The model
includes a PheromoneSpace class managing pheromone value
updates. Additionally, an AntModelControl class manages the
full simulation model. The Ant and AntModelControl class
interfaces in the Behavior Module are shown in Figure 7.

+buildObjects() : Object
+buildActions()
+activateIn()

-lista_hormigas : ListImpl
-lista_obstaculos : ListImpl
-nido : ListImpl
-fuente : ListImpl
-espacio : Grid2dImpl
-superficie : PheromoneSpace
-itinerario : ScheduleImpl

AntModelControl

+explorar() : int
+regresar_a_nido() : int
+utiliza_camino() : int
+regresa_camino() : int
+regresa_sin_comida() : int
+morir() : int
+nace() : int
+recorrer() : int
+regresar() : int
+nueva_ruta() : int

-posicion_x : int
-posicion_y : int
-tipo_hormiga : String
-mundo : PheromoneSpace
-espacio : Grid2dImpl

Ant

Behavior Module

+buildObjects() : Object
+buildActions()
+activateIn()

-lista_hormigas : ListImpl
-lista_obstaculos : ListImpl
-nido : ListImpl
-fuente : ListImpl
-espacio : Grid2dImpl
-superficie : PheromoneSpace
-itinerario : ScheduleImpl

AntModelControl

+explorar() : int
+regresar_a_nido() : int
+utiliza_camino() : int
+regresa_camino() : int
+regresa_sin_comida() : int
+morir() : int
+nace() : int
+recorrer() : int
+regresar() : int
+nueva_ruta() : int

-posicion_x : int
-posicion_y : int
-tipo_hormiga : String
-mundo : PheromoneSpace
-espacio : Grid2dImpl

Ant

Behavior Module

Fig. 7. The diagram shows Ant and AntModelControl class interfaces in the
Behavior Module.

B. Graphic Display Module
The Graphic Display Module allows an easy control of

graphic actions independent from behaviors. The module
includes an AntObserverControl specifying nest, food source
and obstacles in the environment as shown in Figure 8.

+buildObjects () : Object
+buildActions ()
+activateIn ()
+checkforDone ()

-mundo : ZoomRaster
-modelo : AntModelControl
-despl _ferom : Value2dDisplay
-despl _horm : Object 2dDisplay
-despl _obst : Object 2dDisplay
-despl _nido : Object 2dDisplay
-despl _fuente : Object2dDisplay
-tamaño _x : int
-tamaño _y : int

AntObserverControl

+buildObjects () : Object
+buildActions ()
+activateIn ()

-lista_hormigas : ListImpl
-lista_obstaculos : ListImpl
-nido : ListImpl
-fuente : ListImpl
-espacio : Grid2dImpl
-superficie : PheromoneSpace
-itinerario : ScheduleImpl

AntModelControl

+explorar () : int
+regresar _a_nido() : int
+utiliza_camino () : int
+regresa _camino () : int
+regresa _sin_comida () : int
+morir () : int
+nace() : int
+recorrer () : int
+regresar () : int
+nueva _ruta() : int

-posicion _x : int
-posicion _y : int
-tipo_hormiga : String
-mundo : PheromoneSpace
-espacio : Grid2dImpl

Ant

Behavior Module

Graphic Display Module

Multi-agent System

+buildObjects () : Object
+buildActions ()
+activateIn ()
+checkforDone ()

-mundo : ZoomRaster
-modelo : AntModelControl
-despl _ferom : Value2dDisplay
-despl _horm : Object 2dDisplay
-despl _obst : Object 2dDisplay
-despl _nido : Object 2dDisplay
-despl _fuente : Object2dDisplay
-tamaño _x : int
-tamaño _y : int

AntObserverControl

+buildObjects () : Object
+buildActions ()
+activateIn ()

-lista_hormigas : ListImpl
-lista_obstaculos : ListImpl
-nido : ListImpl
-fuente : ListImpl
-espacio : Grid2dImpl
-superficie : PheromoneSpace
-itinerario : ScheduleImpl

AntModelControl

+explorar () : int
+regresar _a_nido() : int
+utiliza_camino () : int
+regresa _camino () : int
+regresa _sin_comida () : int
+morir () : int
+nace() : int
+recorrer () : int
+regresar () : int
+nueva _ruta() : int

-posicion _x :

+buildObjects () : Object
+buildActions ()
+activateIn ()
+checkforDone ()

-mundo : ZoomRaster
-modelo : AntModelControl
-despl _ferom : Value2dDisplay
-despl _horm : Object 2dDisplay
-despl _obst : Object 2dDisplay
-despl _nido : Object 2dDisplay
-despl _fuente : Object2dDisplay
-tamaño _x : int
-tamaño _y : int

AntObserverControl

+buildObjects () : Object
+buildActions ()
+activateIn ()

-lista_hormigas : ListImpl
-lista_obstaculos : ListImpl
-nido : ListImpl
-fuente : ListImpl
-espacio : Grid2dImpl
-superficie : PheromoneSpace
-itinerario : ScheduleImpl

AntModelControl

+explorar () : int
+regresar _a_nido() : int
+utiliza_camino () : int
+regresa _camino () : int
+regresa _sin_comida () : int
+morir () : int
+nace() : int
+recorrer () : int
+regresar () : int
+nueva _ruta() : int

-posicion _x : int
-posicion _y : int
-tipo_hormiga : String
-mundo : PheromoneSpace
-espacio : Grid2dImpl

Ant

Behavior Module

Graphic Display Module

Multi-agent System

Fig. 8. The diagram shows AntObserverControl class interfaces in the
Graphic Display Module.

Figure 9 shows the simulation system interface developed
for this particular application.

Fig. 9. Simulation system interface developed for this particular application.

V. EXPERIMENTS AND RESULTS
In order to make a detailed analysis of the behavior model

we specified a number of experiments and defined a set of
parameters to modify for each experiment.

Figure 10 shows an environment consisting of a nest in blue,
a single food source in yellow, and a number of obstacles in
grey with explorer ants highlighted in red. In the figure,
explorer ants are just leaving the nest.

Fig. 10. Virtual world consisting of a nest in blue, a single food source in
yellow, and a number of obstacles in grey with explorer ants highlighted in
red. Explorer ants are just leaving the nest.

Figure 11 shows an environment consisting of a nest in blue,

three food sources in yellow, and a number of obstacles in
grey with explorer ants highlighted in red. Source number 2 is
closest to nest while sources 1 and 3 are further away.

Fig. 11. Virtual world consisting of a nest in blue, three food sources in
yellow, and a number of obstacles in grey with explorer ants highlighted in
red. Source number 2 is closest to nest while sources 1 and 3 are further away.

Figure 12 shows an environment consisting of a nest in blue,

a food sources in yellow, and a number of obstacles in grey.
Explorer ants highlighted in red correspond to ants in state
exploring (or using path) with explorer ants in yellow
representing ants in coming back to nest (or returning) states.

Fig. 12. Virtual world consisting of a nest in blue, a single food source in
yellow, and a number of obstacles in grey. Explorer ants highlighted in red
correspond to ants in state exploring (or using path) with explorer ants in
yellow representing ants in coming back to nest (or returning) states.

 We defined a set of four simulations to help analyze
explorer and worker behaviors. Simulations vary with respect
to a number of parameters as described in Table I.

Nest

Obstacle

Obstacle

Food
Source

Explorers

Source 1

Source 2

Source 3

TABLE I
SIMULATION SETS

Set Explorer Ants Evaporation Rate
A 30 0.5
B 30 0.001
C 75 0.5
D 75 0.001

When evaporation rate is large pheromone traces evaporate

faster. In each set of simulations we experiment with different
sets of diffusion rates. If the diffusion rate is large the
pheromone will spread out more quickly in the exploration
surface. For each set of diffusion rates we ran 50 simulations
to find a shortest route. When the 50 simulations are finished
we get an average of the shortest route length. We analyze in
the explorer behavior if the resulting shortest route reaches the
actual closest food source. Figure 13 shows results for the four
sets of simulations.

As seen in the graph, the best results are obtained with an
increased number of explorer ants, corresponding to sets C
and D having shorter average routes. By having more
explorers, the number of routes to food sources increases,
resulting in a higher probability of finding shorter routes than
with smaller number of explorers.

30

35

40

45

50

55

60

65

70

75

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Diffusion rate

Sh
or

te
st

 ro
ut

e
Le

ng
th

 A
ve

ra
ge

Set A
Set B
Set C
Set D

Fig. 13. The diagram shows average shortest routes obtained for simulation
sets defined in Table I. Diffusion rates are varied during the experiments.

Nevertheless, quality of exploration can improve even when
the number of explorers is kept constant if pheromone traces
remain in the surface more time. We achieve this by
increasing diffusion rates. The worst results occur for
diffusion rate values between 0.05 and 0.15 with the faster
evaporation rate of 0.5 corresponding to sets A and C
compared to sets B and D, respectively. The worst overall
case is set A, having limited pheromone concentrations and
few explorers.
 Workers need to converge to shortest route paths found by
explorers. To make all workers follow the same route they
have to update pheromone value for the corresponding route.
We have developed to groups of simulations corresponding to
either constant or variable trace updates. We compare in Table
II the percentage of simulations that converge to (1) the
shortest route, (2) the second and third shortest routes, and (3)
forth and other shortest route. We ran one hundred
simulations for each type of trace update using 75 explorers
and an evaporation rate of 0.001 corresponding to set D
having the best parameter combination in Figure 13.

TABLE II
SHORTEST ROUTE CONVERGENCE WITH 75 EXPLORERS

 Shortest
Routes

Constant
Traces

Variable
Traces

1 First 69 % 89 %
2 Second y Third 17 % 9 %
3 Forth and other 14 % 2 %

 To increase the percentage of shortest route convergence
for a constant update we ran 100 additional simulations with
150 explorers as shown in Table III.

TABLE III
SHORTEST ROUTE CONVERGENCE WITH 150 EXPLORERS

 Shortest routes Constant Update
1 First 84 %
2 Second and Third 12 %
3 Forth and other 4 %

 The improvement can be explained by the fact that
increasing the number of explorers increases the total number
of routes to reach food sources.

VI. CONCLUSION
The paper presented a swarm model based on ant colonies

behavior. The model concentrates on exploration of food
sources and carrying food back to the nest. The paper
discusses the ACO – ant colony optimization algorithm used
to compute probabilities from constant and variable
pheromone trace approaches. Behaviors for explorer and
worker ants are described. Results are presented comparing
simulations based on different numbers of explorer ants,
different number of pheromone evaporation and diffusion
rates.

While some interesting results were obtained, the model can
be further extended with more in-depth parameter analysis.
There are many limitations in the model such as the restricted
number of cells that an ant can move during each step, the
limited set of parameter ranges having been evaluated, the
possibility of collisions between explorers, and the limited
analysis of the probability-based algorithms.

Current work concentrates on implementing the swarm
models in real robots to experiment under real constraints,
such as limited sensory information, among others.

ACKNOWLEDGMENT
This work has been supported in part by UC-MEXUS
CONACYT, CONACYT grant #42440, LAFMI, and
“Asociación Mexicana de Cultura A.C.” in Mexico.

REFERENCES
[1] Dorigo, Marco and Stützle, Thomas. Ant Colony Optimization. The MIT

Press, 2003.
[2] Stone, Peter. Layered Learning in Multi-agent Systems: A Winning

Approach to Robotic Soccer. The MIT Press 2000.
[3] Holldobler, Bert and Wilson Edward O., The Ants, Belknap Press, 1990.
[4] Swarm Release 2.2 Documentation. http.//wiki.swarm.org

