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Abstract—The paper presents a swarm model inspired in ant 

colonies where ants perform different tasks. The model 
emphasizes explorer and worker ants responsible for food search 
and bringing food back to the nest, respectively. The model is 
based on ACO – Ant Colony Optimization providing a shortest 
path algorithm during route exploration. Results from ant colony 
model simulations are presented and contrasted. 
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I. INTRODUCTION 

ANT COLONY OPTIMIZATION (ACO) is an intelligent colony 
algorithm inspired by swarm behavior in real ants [1]. 
Extensive work has been done based on swarm studies 
producing a number of models and corresponding applications 
intended to solve optimization problems such as routing in 
telecommunications and the traveling salesman or postman 
problem in which an optimal route must be calculated to 
deliver packets or letters in different locations. 

Swarms define groups or teams of agents that share a 
common goal. Team members coordinate behaviors by 
adapting cognitive processes to their own perceptions (input 
sensing) and communications, direct or indirect, with other 
team members [2].  

The ant is the insect that best represents the concept of 
swarm intelligence providing inspirations to distributed 
problem solving. Originally, swarm studies were inspired by 
biological social behaviors in insects such as termites, wasps 
or ants. Skills shown by swarms seem to exceed skills shown 
by individual agents. Thus intelligent swarms display 
intelligent group emergent behavior even if individual 
members are not considered themselves intelligent. In many 
such biological studies, high level group behavior is achieved 
by a small set of simple low level interactions among 
individuals and their environment.  

Among the many properties that can be found in an 
Intelligent Colony it is important to emphasize: 
• Distribution. A colony is distributed, i.e., there does 

not exist a central control entity or a central source of 
information. 

• Parallelism. Colony members may process in parallel 
improving overall task performance. If tasks can be 
further subdivided benefits are even larger. 

• Robustness. Ants or agents in the colony may fail and 
even die without affecting the overall task. This is due 
to redundancy where agents can adapt to changes in the 
environment including varying number of agents.  

• Modularity. The problem can be analyzed by parts 
such as by specific behaviors performed by colony 
members. 

• Scalability. Solutions to simpler problems can be 
extended to larger ones. 

• Autonomy. Colony individuals can sense and modify 
environments.  

 

II. ANT COLONY OPTIMIZATION 
An ant colony consists of a complex social structure in 

which each ant type has its own functions to do in the rest if 
its life [3]. Ants in the colony include a hierarchical 
organization: 
• Queen ant responsible for laying eggs for future colony 

members.  
• Soldier ants take care of the whole colony defending 

the nest from other insects, including ants belonging to 
other colonies.  

• Explorer ants look for food leaving pheromone traces 
in their path.  

• Worker ants follow pheromone path left by explorers 
ants. 

There exist many ant-based algorithms, nevertheless the 
most important one is ACO algorithm. ACO is inspired by the 
experiment described in Figure 1. An ant colony has access to 
a food source through a bridge which has two paths, one 
longer than the other. After certain period of time, most of the 
ants will end up going through the shortest path. Furthermore, 
the probability of choosing this shortest path increases in 
proportion to the difference between the shorter and longer 
path distances. Ants have the ability to modify the 
environment they explore by leaving tracks of pheromone on 
the soil.  In a decision point (path bifurcation) the probability 
of selecting one particular path is based in the quantity of 
pheromone they sense on each path. Ants choose the shortest 
path by following paths marked by other paths that have got to 
the food source and back to the nest in the least amount of 
time. Followings ants sense more pheromone in the path 
increasing the probability for the next ant choosing the same 
shortest path. 
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Fig. 1. Bridge between nest and food source. 
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In the ACO algorithm the main task is for each ant to find 

the shortest path between a source node s and a destination 
node d as highlighted in blue and shown in Figure 2. In these 
problems route length is computed by minimizing the number 
of hops the ant has to take. 
 

  
Fig. 2. Optimal route of length two from source node s to destination node d. 

 
For each arc i,j that interconnects nodes i and j in the graph 

we define a variable τi,j representing the artificial pheromone 
or pheromone trail. This trail is written and read by each ant. 
The quantity of pheromone that ants leave in the explored 
surface is proportional to the utility of each arc estimated by 
each ant. The probability of ant k at node i of moving to node j 
is represented by ki,j. Equation 1 describes the probability 
calculation, where node j belongs to the set N containing all 
one-step neighbors of node i. 
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If we consider an ant located at node i with five 

neighboring nodes f, j, k, l, m, and n, then an arc that connects 
node i  with the new nodes an artificial pheromone value τ as 
shown in Figure 4.  

 

 
Fig. 3. Artificial pheromone values for arcs connecting node i with five 
neighboring nodes f, j, k, l, m, and n. 
 

The five neighboring nodes f, j, k, l, m, and n, correspond to 
the five neighboring cells in a two dimensional grid as shown 
in Figure 5.  Note that only the front and side cells are 
considered as next moving steps. 
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Fig. 4. Neighboring cells f, j, k, l, m, and n for node i. 

 
The probability of ant k moving from node i to node j in 

Figures 3 and 4 is described by equation 2. 
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In this algorithm ants update traces by ∆τ pheromone after 

each step. After a period of time t+1, the amount of 
pheromone at a particular point is described by equation 3, 

 
      τi,j(t+1)= τi,j(t) + ∆τ (3) 
 
According to this rule, an ant using arc i,j will increase the 

probability of subsequent ants of choosing the same path. The 
algorithm requires selecting an appropriate value for ∆τ. 
There are two ways of updating the pheromone trail, a 
constant trace and variable trace. 

Constant trace. In the simplest case and similarly to real 
ants, pheromone update ∆τ is kept constant all the time, i.e. 
same values are used for every arc the ant travels. The shortest 
path is computed by differential path length, i.e. shorter paths 
are computed by stronger pheromone concentrations. This 
occurs since ants will strengthen shorter paths by leaving 
pheromone traces more often than in longer paths. Thus, the 
probability of ants choosing the shortest path is incrementally 
increased. 

Variable trace. A more complex way of updating 
pheromone trail sets ∆τ dependent on path length. A 
pheromone trace will be computed by a variable trace function 
∆τ = 1/Lk, where Lk is the length of the path found by ant k. If 
a path is shorter then the amount of pheromone trace will be 
higher. To avoid a quick convergence a pheromone 
evaporation mechanism is included. Thus, the intensity of 
pheromone decreases improving the probability of exploring 
new routes. In general, pheromone evaporation is important in 
artificial ants since they offer a learning mechanism for newer 
policies to forget bad decisions made in the past.  

 

III. BEHAVIOR MODEL 
In order to simulate an ant colony we established a set of 

basic behavior objectives and rules: 
• The ant colony goal is to find a route from the nest to a 

food source and vice versa, while storing the food in 
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the nest as quick as possible. 
• The ant colony will be conformed by two types of ants: 

explorers and workers. 
• Explorer ants search for a path from nest to food 

source. Food gathered is taken back to the nest using 
the same path. 

• Worker ants follow one of the paths discovered by 
explorer ants. 

• After some time most of the workers should follow a 
single unique path from nest to food source. It must be 
one of the shortest paths found by the explorers. 

• Communication among ants is limited to pheromone 
traces indirect laid on the exploring surface. 

 
In the next two sections we describe behaviors for 

explorer and worker ants. There are some similarities 
between the two. 

A.  Explorer Ants 
The Explorer ant life cycle is described as follows: 
 
1. The explorer ant gets out of the nest walking in an 

arbitrary path in search of food. 
2. During the search the explorer ant modifies the 

environment by laying pheromone traces on the soil in 
order to attract other explorers to its route. 

3. When food is discovered the explorer ant takes some 
and returns to the nest following the same path it used 
to get there.  

4. Each explorer can repeat the search twice to avoid 
saturation of ants in the exploring surface. 

 
The explorer behavior states are shown in Figure 5 and 
described in more detail as follows: 
 Exploring. Before the explorer leaves the nest, it senses the 
quantity of pheromone in each node (cell) around. The next 
cell is chosen by means of the probabilistic rule previously 
explained in the ACO algorithm. When the ant moves to the 
next cell, it calculates again the probability and moves to the 
following cell and so on.  
 Coming back to nest. When a food source is discovered, 
the explorer takes a portion of food and returns to the nest 
using the same path back. The state ends when the nest is 
perceived. 
 Using path. The explorer ant searches for food again 
similarly to Exploring state. The state ends when the nest is 
perceived. 

Returning. The explorer ant returns to the nest using the 
same previous path. This state is very similar to Coming back 
to nest state. The difference is that the Returning state ends 
when either the explorer finds the nest and goes again to the 
food source, so next state would be Using path, or the 
explorer has already used the path n times terminating in 
Death state. 
 Returning without food. If the ant has explored for an 
extensive period of time without finding any food, it returns to 
the nest using the learnt path and terminating in Death state. 

Death. In this state explorers stop their search, i.e. 
explorations ends. 
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Fig. 5. Explorer ant behavior described by a state machine comprising 
Exploring, Coming back to nest, Using path, Returning, Returning without 
food and Death. 
 

B.  Worker Ants 
The Worker ant life cycle is described as follows: 
 
1. The worker ant gets out the nest to bring food back to 

the nest. 
2. It must follow one of the routes discovered by the 

explorers. 
3. When a worker has got to the food nest it brings the 

food back to the nest using the same path. 
4. Workers choose the shortest routes from the different 

routes discovered by the explorers. 
5. Workers also affect the environment so other workers 

can follow the same shortest route. 
 

 The worker behavior states are shown in Figure 6 and 
described in more detail as follows: 

Birth. A worker ant chooses from one of the routes 
explorers discovered. The decision is based on the 
probabilistic rule defined by the ACO algorithm. Each route is 
assigned a probability based on the corresponding pheromone 
value. For example if route A has a greater pheromone value 
than route B, then route A will have a grater probability of 
being selected by worker ants. 

Using route. Worker follows to the route to the food source 
previously chosen. This sate ends when the food is sensed. 

Returning. This state is similar to Returning state for 
explorers ants. The main difference is that a worker ant can 
travel through different paths. The state ends when the worker 
arrives to the nest. 

New route. Each worker ant can choose from any route 
discovered by the explorers. Workers also update pheromone 
traces for the traveled route. 



 
 

 

 Death. In this state workers stop bringing back food, i.e. 
work ends. 
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Fig. 6. Worker ant behavior described by a state machine comprising Birth, 
Using route, Returning, New route and Death. 

 

IV. SIMULATION SYSTEM 
The ACO algorithm and behavior model described in 

sections II and III were simulated using the Swarm system [4]. 
Swarm is a software platform for adaptive multi-agent system 
simulation with special emphasis on ant colonies type of 
models. The main objective of this system is to model and 
simulate large numbers of computational objects or agents 
implementing simple behaviors. The simulation system 
involves specifying and implementing a Behavior and 
Graphic Display modules as described in the following 
sections.  

A. Behavior Module 
In the Behavior Module we specified a special object class 

called Ant where we defined all behavior states. The Ant class 
includes attributes corresponding to ant localization in the 
simulated world. A direct mapping between behaviors and 
functions was done to implement each state. The model 
includes a PheromoneSpace class managing pheromone value 
updates. Additionally, an AntModelControl class manages the 
full simulation model. The Ant and AntModelControl class 
interfaces in the Behavior Module are shown in Figure 7. 

 

+buildObjects() : Object
+buildActions()
+activateIn()

-lista_hormigas : ListImpl
-lista_obstaculos : ListImpl
-nido : ListImpl
-fuente : ListImpl
-espacio : Grid2dImpl
-superficie : PheromoneSpace
-itinerario : ScheduleImpl

AntModelControl

+explorar() : int
+regresar_a_nido() : int
+utiliza_camino() : int
+regresa_camino() : int
+regresa_sin_comida() : int
+morir() : int
+nace() : int
+recorrer() : int
+regresar() : int
+nueva_ruta() : int

-posicion_x : int
-posicion_y : int
-tipo_hormiga : String
-mundo : PheromoneSpace
-espacio : Grid2dImpl
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Fig. 7. The diagram shows Ant and AntModelControl class interfaces in the 
Behavior Module. 
 

B. Graphic Display Module 
The Graphic Display Module allows an easy control of 

graphic actions independent from behaviors. The module 
includes an AntObserverControl specifying nest, food source 
and obstacles in the environment as shown in Figure 8. 

 

+buildObjects () : Object
+buildActions ()
+activateIn ()
+checkforDone ()

-mundo : ZoomRaster
-modelo : AntModelControl
-despl _ferom : Value2dDisplay
-despl _horm : Object 2dDisplay
-despl _obst : Object 2dDisplay
-despl _nido : Object 2dDisplay
-despl _fuente : Object2dDisplay
-tamaño _x : int
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Fig. 8. The diagram shows AntObserverControl class interfaces in the 
Graphic Display Module. 
 

Figure 9 shows the simulation system interface developed 
for this particular application. 
 



 
 

 

 
Fig. 9. Simulation system interface developed for this particular application. 

V.  EXPERIMENTS AND RESULTS 
In order to make a detailed analysis of the behavior model 

we specified a number of experiments and defined a set of 
parameters to modify for each experiment.  

Figure 10 shows an environment consisting of a nest in blue, 
a single food source in yellow, and a number of obstacles in 
grey with explorer ants highlighted in red. In the figure, 
explorer ants are just leaving the nest. 

 

 
Fig. 10. Virtual world consisting of a nest in blue, a single food source in 
yellow, and a number of obstacles in grey with explorer ants highlighted in 
red. Explorer ants are just leaving the nest. 

 
Figure 11 shows an environment consisting of a nest in blue,  

three food sources in yellow, and a number of obstacles in 
grey with explorer ants highlighted in red. Source number 2 is 
closest to nest while sources 1 and 3 are further away. 

 

 
Fig. 11. Virtual world consisting of a nest in blue, three food sources in 
yellow, and a number of obstacles in grey with explorer ants highlighted in 
red. Source number 2 is closest to nest while sources 1 and 3 are further away. 

 
Figure 12 shows an environment consisting of a nest in blue,  

a food sources in yellow, and a number of obstacles in grey. 
Explorer ants highlighted in red correspond to ants in state 
exploring (or using path) with explorer ants in yellow 
representing ants in coming back to nest (or returning) states. 
 

 
Fig. 12. Virtual world consisting of a nest in blue, a single food source in 
yellow, and a number of obstacles in grey. Explorer ants highlighted in red 
correspond to ants in state exploring (or using path) with explorer ants in 
yellow representing ants in coming back to nest (or returning) states. 
 
 We defined a set of four simulations to help analyze 
explorer and worker behaviors. Simulations vary with respect 
to a number of parameters as described in Table I. 
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TABLE I 
SIMULATION SETS 

Set Explorer Ants Evaporation Rate 
A  30 0.5 
B 30 0.001 
C 75 0.5 
D 75 0.001 

 
When evaporation rate is large pheromone traces evaporate 

faster. In each set of simulations we experiment with different 
sets of diffusion rates. If the diffusion rate is large the 
pheromone will spread out more quickly in the exploration 
surface. For each set of diffusion rates we ran 50 simulations 
to find a shortest route. When the 50 simulations are finished 
we get an average of the shortest route length. We analyze in 
the explorer behavior if the resulting shortest route reaches the 
actual closest food source. Figure 13 shows results for the four 
sets of simulations. 

As seen in the graph, the best results are obtained with an 
increased number of explorer ants, corresponding to sets C 
and D having shorter average routes. By having more 
explorers, the number of routes to food sources increases, 
resulting in a higher probability of finding shorter routes than 
with smaller number of explorers.  
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Fig. 13. The diagram shows average shortest routes obtained for simulation 
sets defined in Table I. Diffusion rates are varied during the experiments.  
  

Nevertheless, quality of exploration can improve even when 
the number of explorers is kept constant if pheromone traces 
remain in the surface more time. We achieve this by 
increasing diffusion rates. The worst results occur for 
diffusion rate values between 0.05 and 0.15 with the faster 
evaporation rate of 0.5 corresponding to sets A and C 
compared to sets B and D, respectively. The worst overall 
case is set A, having limited pheromone concentrations and 
few explorers.  
 Workers need to converge to shortest route paths found by 
explorers. To make all workers follow the same route they 
have to update pheromone value for the corresponding route. 
We have developed to groups of simulations corresponding to 
either constant or variable trace updates. We compare in Table 
II the percentage of simulations that converge to (1) the 
shortest route, (2) the second and third shortest routes, and (3) 
forth and other shortest route. We ran one hundred 
simulations for each type of trace update using 75 explorers 
and an evaporation rate of 0.001 corresponding to set D 
having the best parameter combination in Figure 13. 

TABLE II 
SHORTEST ROUTE CONVERGENCE WITH 75 EXPLORERS 

 Shortest 
Routes 

Constant 
Traces 

Variable 
Traces 

1 First  69 % 89 % 
2 Second y Third 17 % 9 % 
3 Forth and other 14 % 2 % 

 
 To increase the percentage of shortest route convergence 
for a constant update we ran 100 additional simulations with 
150 explorers as shown in Table III.  
 

TABLE III 
SHORTEST ROUTE CONVERGENCE WITH 150 EXPLORERS 

 Shortest routes Constant Update 
1 First 84 % 
2 Second and Third 12 % 
3 Forth and other 4 % 

 
 The improvement can be explained by the fact that 
increasing the number of explorers increases the total number 
of routes to reach food sources. 

VI. CONCLUSION 
The paper presented a swarm model based on ant colonies 

behavior. The model concentrates on exploration of food 
sources and carrying food back to the nest. The paper 
discusses the ACO – ant colony optimization algorithm used 
to compute probabilities from constant and variable 
pheromone trace approaches. Behaviors for explorer and 
worker ants are described. Results are presented comparing 
simulations based on different numbers of explorer ants, 
different number of pheromone evaporation and diffusion 
rates. 

While some interesting results were obtained, the model can 
be further extended with more in-depth parameter analysis. 
There are many limitations in the model such as the restricted 
number of cells that an ant can move during each step, the 
limited set of parameter ranges having been evaluated, the 
possibility of collisions between explorers, and the limited 
analysis of the probability-based algorithms. 

Current work concentrates on implementing the swarm 
models in real robots to experiment under real constraints, 
such as limited sensory information, among others. 
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