
 
Abstract—In order to understand the underlying structural 
and behavioral mechanisms of living organisms, scientist 
follow cycles of experimentation and simulation. 
Experimentation, in the form of data gathering (ethological, 
physiological and anatomical), feed theoretical models that, 
through simulation, generate predictions to be validated by 
further experimentation in both robots as well as living 
organisms. Due to the  inherent complexity of these biological 
neural models and the resulting architectures, most 
biologically inspired robotic systems are behavior based but 
not neural based, i.e. behavior is described by processes other 
than neural networks. Yet, biological neural mechanisms are 
crucial in modeling and giving new insights into adaptation 
and learning. In order to overcome the expensive 
computational requirements of biological neural based robotic 
systems, it is necessary either to incorporate very powerful 
robotic hardware or, particularly in the case of mobile robots, 
embed the robot via wireless communication into remote 
distributed computational systems. While the first approach 
simplifies the overall robotic architecture it results in bulky 
and expensive robots. The second approach results in smaller 
and less expensive robots, although involving more complex 
architectures. The work presented in this paper discusses 
neuroethological prey acquisition and predator avoidance 
models as basis for embedded distributed robotic systems. The 
robotic architecture integrates the MIRO (Mobile Internet 
Robotics) system and the NSL/ASL neural simulation system.   
Index Terms-- robot, schema, neural, embedded, distributed 

I. INTRODUCTION 

The study of biological systems compris es a cycle of 
biological experimentation, computational modeling and 
robotics experimentation as depicted in Figure 1. This cycle 
serves as framework for the study of the underlying neural 
mechanisms responsible for animal behavior. At the 
moment most brain modeling is done through simulations. 
By providing an experimentation platform, many issues that 
are over simplified in simulation can be further analyzed 
while serving as inspiration in the design of more advanced 
neuroethological robotics architectures .  
 
While many robotic architectures have been inspired in 
biological studies [6] the most currently used approach 
involves behavioral based robotics [5], intended to imitate 
animal behavior or “ethology” as opposed to 
“neuroethology” intended to imitate both neural structure as 
well as behavior. And while many robot architectures do 
incorporate some kind of neural processing, most of them 
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are of the artificial neural kind involving non-biological 
training algorithms, such as back-propagation or 
reinforceme nt learning [24].  
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Figure 1. Framework for the study of living organisms through 
cycles of biological experimentation, computational modeling, 
and robotics experimentation.  

An important concern with biologically inspired neural 
based robotics is how to achieve real-time performance 
considering the expensive nature of neuroscientific 
computation. One approach to overcoming this challenge is 
to have “super-robots” in analogy to supercomputers, 
something that usually results in prohibitively expensive 
and bulky robotic systems, or very specialized and hard to 
program hardware systems. A second approach is to 
incorporate simpler and less expensive robotic hardware 
although embedding it to an inexpensive network of 
computers. Under such a computing architecture time -
consuming processing is done remotely outside the robotic 
hardware, with the robot sending sensory input and 
receiving motor output commands via wireless 
communication. Such an approach reduces the robot’s 
physical size, power requirements as well as cost.  
 
In general, a number of embedded robotic architectures 
have been proposed together with many different kinds of 
robotic applications, mostly teleoperated [21]. These efforts 
have highlighted the potential of the Internet when linking 
in a distributed fashion remote robotic devices to humans or 
other computational resources. Yet, to take advantage of 
such embedded architectures it is necessary to overcome 
restrictions in wireless transmission bandwidth, unreliable 
communication or even complete fa ilures.  
 
In the next sections we discuss our current work on 
biologically inspired robots and embedded mobile systems 
in pursuing adaptable and inexpensive robotic architectures.  
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II. BIOLOGICALLY INSPIRED ROBOTS 

Many living organisms have been studied, both at the 
behavioral and structural level, in trying to develop neural-
based mobile robots. Some examples of animals that have 
been studied include: frogs and toads [1], praying mantis 
[11], cockroaches [9], and hoverflies [13]. To address the 
underlying comp lexity in simulating and building such 
robotics systems we usually distinguish between two 
different levels of modeling, behavior (schemas [3]) and 
structure (neural networks [2]). 

A. Schemas and Neural Networks 
At the behavioral level, neuroethological data from living 
animals is gathered to study the relationship between living 
organisms and their environment, giving emphasis to 
aspects such as cooperation and competition between them. 
Examples of behavioral models include the praying mantis 
Chantlitaxia ("search for a proper habitat") as models for 
ecological robotics designed and implemented at the 
behavior level using finite state automata [7], and the frog 
and toad (rana computatrix) prey acquisition and predator 
avoidance models [14]. We describe behavio r in terms of 
perceptual and motor schemas decomposed and refined in a 
recursive fashion. Behaviors, and their corresponding 
schemas, are processed via the Abstract Simulation 
Language ASL [26]. 
 
At the structural level, neuroanatomical and 
neurophysiological data are used to generate perceptual and 
motor neural network models corresponding to schemas 
developed at the behavioral level. These models try to 
explain the underlying mechanisms for sensorimotor 
integration in visually guided animals [30]. Examples of 
neural network models are tectum and pretectum-thalamus 
responsible for discrimination among preys and predators 
[10], the toad´s prey acquisition and predator avoidance 
neural models [12], the toad´s prey acquisition with detour 
behavior model involving adaptation and learning [15] and 
higher-level models such as the monkey oculomotor system 
controlling eye saccades [18]. Neural networks are 
processed via the Neural Simulation Language NSL [28].  
 
In general, models that involve neural networks are usually 
limited in behavioral scope, while more comprehensive 
behavioral models are usually simplified in terms of their 
inherent neural complexity [4].  
 
In order to model comprehensive biological systems 
involving both behavior and structure, we have developed a 
schema computational model defined in terms of schema 
hierarchies representing a distributed model for action-
perception control [29]. The schema computational model 
follows a tree or graph-like structure as shown in Figure 2. 
At the schema level, b locks correspond to schemas or 
behavior agents representing animal or robot behavior. At 
the neural level, blocks represent neural networks, some 
having a direct correspondence to brain regions. High-level 
schemas may be decomposed into more detailed lower level 
schemas. At the same level, schemas are interconnected 

(solid arrows), or when at different levels, schemas are 
relabeled having their task delegated (dashed arrows) to 
neural network implementations or other processes.  
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Figure 2. The ASL/NSL computational model is based on 
hierarchical interconnected schemas. A schema at a higher 
level (level 1) is decomposed (dashed lines) into additional 
interconnected (solid arrow) subschemas (level 2). At the 
lowest level schemas are implemented by neural networks or 
other processes. 

At the schema level, schemas are interconnected by 
matching schema interfaces consisting of multiple 
unidirectional control/data, input and output ports, as shown 
in Figure 3. When doing connections, output ports from one 
schema are connected to input ports from other schemas, 
and when doing relabelings, ports of similar type (input or 
output) belonging to schemas at different levels in the 
hierarchy are linked to each other. The hierarchical port 
management methodology enables the development of 
distributed architectures where schemas may be designed in 
a top-down and bottom-up fashion implemented 
independently and without prior knowledge of the complete 
model or their final execution environment, encouraging 
component reusability.  
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Figure 3. Each schema may contain multiple input, 
din1,...,dinn, and output, dout1,...,doutm, ports for unidirectional 
communication. 

In the top-down approach a complete system is first 
described at the schema level with schemas implemented by 
neural modules when available. In the bottom-up approach 
neural models are developed and then integrated in creating 
more complete schema systems. In order to build models 
involving both schemas and neural networks we integrated 
our two modeling languages ASL and NSL under a single 
simulation system. 



B. A Toad’s Schema Model 
In order to represent, for example, a toad schema model we 
first describe a particular set of behaviors, such as prey 
acquisition (with detour) and predator avoidance. The 
corresponding schema model is described in terms of 
schema and neural modeling levels  as depicted in Figure 4 
[16]. We include a single schema layer (level 1) describing 
the different behaviors being modeled, primarily prey 
approach , predator avoidance and static object avoidance. 
Additional schemas include visual and tactile input, depth 
and moving stimulus selector (when more than one prey 
exists), prey, predator and static object recognizers together 
with the four types of motor actions: forward , orient, 
sidestep and backward . When possible, tasks at this level 
are delegated next layer down, where schemas perform 
more refined tasks. At the neural level, blocks represent 
neural networks. In this model, a number of neural 
networks are incorporated: Retina [25], Stereo [22], 
Maximum Selector [17], Tectum and PreTectum-Thalamus 
[10], together with neural motor heading maps. 
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Figure 4. Toad’s prey-predator visuomotor coordination model 
architecture with schema and neural level modules. 

III. EMBEDDED MOBILE SYSTEMS  

In the past years a number of research efforts have been 
carried out to embed mobile system into computer networks 
via wireless communication [19]. These efforts have 
highlighted the benefits of embedded systems in general 
and robotics in particular, including control and monitoring 
of sometimes expensive and/or remotely located robotic 
devices such as in the case of teleoperated robots in search 
and rescue applications [23]. Furthermore, embedding 
autonomous robots to computer networks has the additional 
benefit of not only monitoring internal behavior but also 
enhancing its capabilities by linking the robot to remote 
computational resources, such as image processing or 
neural processing.  
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Figure 5. MIRO embedded robotic architecture consisting of 
multiple autonomous robots linked to their own instance of the 
distributed neural computational system. All such instances are 
connected to Internet for remote monitoring. 

A. Embedded Robotics 
As part of our current work in the design of embedded 
robotic systems we have developed the MIRO (Mobile 
Internet Robotics) architecture shown in Figure 5. The 
architecture consists of multiple robots each one connected 
to its own particular instance of the neural computational 
system. Processing is distributed among the robotic 
hardware and the remote computational system. Although it 
is possible to share robot “intelligence” among multiple 
robots where application could easily take advantage of 
information sharing (see [8] for a discussion on distributed 
versus centralized robotic systems), we are particularly 
interested in keeping a truly autonomous robot architecture 
where neuroethological experimentation can be conducted. 
Under the MIRO architecture: (i) time -consuming processes 
are carried out in the (neural) computational system, 
implemented using the NSL/ASL system while (ii) sensory 
input, motor output and other limited tasks are carried out 
in the robot hardware. In such a way, the computational 
system provides the robot’s “intelligence”, while the robot 
does limited processing. The most important challenge is 
how to achieve real-time processing under such an 
architecture .  

B. Distributed Neural Processing 
Neural network models produce and consume large 
amounts of data and take a very large number of processing 
cycles to obtain meaningful results. A typical computation 
cycle starts by obtaining sensory input (visual and tactile) 
and ends by producing motor output.  In between, the 
different recognizers process input data in order to 
instantiate the corresponding behaviors, prey acquisition, 
predator avoidance, static object avoidance or a 
combination. Cycles continue indefinitely or until some 
specific task is completed, such as eating the prey. For 
example, a “typical” retina model [25] may consist of more 
than 100,000 neurons and half a million interconnections 
requiring many hours of simulation to complete these 
cycles.  
 
The expensive nature of neural computation is further 
exacerbated by the fact that a comprehensive schema-neural 
model includes multiple neural modules. This becomes 



even worse in the case of higher-level animals involving 
more behaviors and other brain regions [4]. By taking 
advantage of the parallel and distributed nature of neural 
network computation [27], we extended the original 
NSL/ASL simulation system into a distributed architecture 
[31]. 

IV.  EXPERIMENTS AND RESULTS  

We have prototyped the embedded robotic system with a 
number of biologically inspired experiments involving prey 
acquisition and predator avoidance. In Figure 6 we show 
three different experiments involving a toad and a barrier in 
front of a prey, where fencepost gaps have the same width 
[16]. 
 

 
Figure 6. A.  Approach to prey with single 10cm barrier 
with immediate detour.  B.  Approach to prey with single 
20 cm barrier: first trial with frog in front of 20cm barrier 
(numbers indicate the succession of the movements). The 
toad directly approaches de center of the barrier requiring 
successive trials to manage the detour around it.  C.  
Approach to prey with single 20cm barrier. After 3 trials 
the frog detours directly around the 20cm barrier.  
Arrowheads indicate the position and orientation of the 
frog following a single continuous movement after which 
the frog pauses. 

A. Experiment I: A 10cm wide barrier with the toad 
starting from a long enough distance (15 -25cm) in 
front of the barrier and the worm 10cm behind the 
barrier. The experiment shows (in 95% of the trials) 
reliable detour behaviors from the first interaction with 
the 10cm barrier producing an immediate approach 
towards one of the edges of the barrier. 

B. Experiment II: A 20cm wide barrier where the "naïve" 
toad (a toad that has not been yet exposed to the 
barrier) tends to go towards a fencepost gap in the 
direction of the prey (this was the case for 88% of the 
trials).  The toad initially approaches the fence trying to 
make its way through the gaps. During the first trials 
the toad goes straight towards the prey thus bumping 
into the barrier. Since the toad is not able to go through 
a gap it backs-up about 2cm and then reorients towards 
one of the neighboring gaps.  

C. Experiment III: A 20cm wide barrier where the 
"trained" toad, after 2 (43%) or 3 (57%) trials, is 
already detouring around the barrier without bumping 
into the barrier. The behavior involves a synergy of 
both forward and lateral body (sidestep) movements in 
a very smooth and continuous single movement. 

 
The model and corresponding experiments were developed 
and simulated with the NSL system. In Figures 7 we show 
simulated output for the three experiments. 
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Figure 7. The above diagrams display the Rana 
Computatrix basic experiments for the prey acquisition and 
detour model. The different dots correspond to the frog's 
trajectory from its initial location as it finally reaches the 
prey. The left-hand side shows the resulting motion path 
for the 10cm barrier. Note how the frog heads directly 
towards the side of the barrier. The middle diagram 
displays the resulting motion path for the 20cm barrier 
experiment before learning. We have added numbers 
corresponding to the frog's position in time. In this 
particular experiment the frog hits the barrier three times 
before perceiving the side of the barrier and moving 
towards the prey. The right-hand side diagram shows the 
resulting motion path for the 20cm wide barrier after 
learning.  

In Figures 8 we show experimental results for the prey 
acquisition model with a 10cm barrier showing direct 
detour. The experiment was carried out using a Lego-based 
robot remotely controlled by the MIRO system. A wireless 
camera was added on top of the robot transmitting video to 
remote video capture devices. This robotic framework is 
currently being expanded to OOPIC and PC/104 based 
robots with Internet based wireless cameras. 
In Figure 9, we show how scenes are visualized directly 
from Internet, in this case consisting of an aerial and robot 
camera. User interaction includes additional graphic 
displays showing neural network states for the different 
neural schemas as the experiment progresses. 
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Figure 8. Results from prey acquisition experiment 
for 10cm barrier with direct detour around barrier. 

 
Figure 9. Internet aerial view of autonomous robot and 
robot’s camera view of “blue” prey-like stimulus with 
NSL/ASL frames showing results from different visual and 
neural modules in a basic prey acquisition robot 
experiment. 

V. CONCLUSIONS AND DISCUSSION  

The work presented in the paper overviews the challenges 
and complexity in modeling robotic systems inspired by 
neuroethological brain models. The motivation behind this 
work is: (1) to provide neuroscientists a testbed for robotic 
experimentation, and (2) to provide scientists with 
biologically inspired architectures in designing more 
advanced robotic systems. 
 
In terms of neuroethological modeling complexity is 
managed by taking a multi-level approach emphasizing 
both top-town and bottom-up designs through different 
levels of granularity. At the top-level behaviors are 
described in terms of schema models such as in the frog's 
prey acquisitions and predator avoidance. Schemas may be 
refined in a hierarchical structure until reaching lower-level 
neural networks representing schema implementations. The 
main challenge with these implementations is the need to 

link independently developed neural models, such as those 
shown in Figure 4, where input and output specifications do 
not necessarily match. For example, the original neural 
models for Stereo , MaxSelector, Tectum and Pretectum 
incorporated their own visual input instead of more faithful 
R2, R3, and R4 Retina class cells. This was done in order to 
obtain quicker results and make them independent from 
other models. It should be that the original neural models 
were developed mostly as part of PhD theses, taking quite 
some time to develop. At this time it is necessary to 
reexamine the different neural models in order to: (1) 
separate what relates to actual visual input from specialized 
module processing and (2) modify these models to accept 
R2, R3, and R4 output coming from the Retina model. To 
complicate matters further, the logic of one module may be 
based on different assumptions to those of other modules, 
e.g. different experiments, parameters or time frequencies. 
Yet, if we do not manage this integration, it will not be 
possible to “reuse” neural modules in more comprehensive 
neuroethological models while serving as basis for more 
advanced robotic architectures.  
 
Historically, most brain modeling has been accomplished 
through simulation, but simulation is not quite the same as 
real-world robotic experimentation. In particular, many 
shortcuts are taken in simulation. For example, simulated 
cameras and world objects are usually made quite ideal; 
cameras have large visual fields while objects have 
“perfect” sizes. Once models are experimented under real 
world conditions with physical cameras, where visual fields 
vary in size and objects become harder to recognize. As 
part of our initial model experimentation with real robots, 
an interesting problem appeared in our prey acquisition 
with detour experiment, the problem of “losing” the prey 
once the robot orients towards one of the edges of the 
barrier. In the simulated version the robot always perceived 
the prey as well as predators. While toads do take care of 
this problem the actual model did not. This is an example 
where simulated models may do fine under simulated 
environments but do not address specific issues originating 
from actual embodied robot experimentation. A simple 
solution to this problem is to add a new motor to control the 
camera independently from the robot movement while 
providing separate control. In dealing with this issue, we 
can get inspiration from other neurobiological models, for 
example the oculomotor system in monkeys [18] 
responsible for controlling eye saccades among other 
functions. An interesting function of the oculomotor system 
is the control of “memory” saccades where the eye’s fovea 
redirects itself to a stimulus from information previously 
recorded, something of particular interest to the prey 
acquisition and predator avoidance models. Yet, it is not 
simply a matter of integrating across the two models. The 
prey acquisition and predator avoidance models are based 
on toad and frog studies, while the oculomotor system 
previously mentioned is based on monkey studies, varying 
quite a bit in terms of neurobiological systems involved. To 
neurobiologist this is quite significant. On the other hand, to 
robotic designers this is not necessarily important. 
 



Additionally, most of our experiments until now have 
involved single robots. The reason for this has been mostly 
due to the underlying complexity of the actual models. Our 
next goal is to experiment with multiple robots, where each 
robot represents a prey, toad or predator. The idea is not 
only to test the interaction among multiple neurothological 
robots but also to test behaviors that require such dynamics.  
 
In terms of actual robotic systems, one particular concern is 
the expensive nature of neural processing. To improve on 
performance and reduce the size and cost of neural based 
robots, we have developed an embedded distributed robotic 
architecture where neural networks are remotely processed. 
For this purpose we have extended the NSL/ASL neural 
simulation system into a distributed environment. While we 
are in the process of assessing the efficiency of the MIRO 
embedded architecture there are many interesting questions 
that have to be dealt with, for example, what happens when 
communication between the robot and computational 
system actually fails or becomes extremely slow or 
unreliable. When such situation arises, the robot could 
respond in many ways, simply waiting without doing 
anything until communication is restored, ending its 
mission, or performing other more limited tasks that may 
put it back in action such as actively searching for a 
location where communication can be reestablished.  
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