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1. Introduction 
The chapter describes our current work in developing cognitive robotics 
architectures in the context of robot soccer coaching using spoken language. The 
work exploits recent developments in cognitive science, particularly notions of 
grammatical constructions as form-meaning mappings in language, and notions of 
shared intentions as distributed plans for interaction and collaboration. We exploit 
social interaction by structuring communication around shared intentions that guide 
the interactions between human and robot. We demonstrate this approach in robot 
soccer coaching distinguishing among three levels of human-robot interaction. The 
first level is that of commanding or directing the behavior of the robot. The second 
level is that of interrogating or requesting a behavior explanation from the robot. The 
third and most advanced level is that of teaching the robot a new form of behavior. 
The chapter is organized as follows: (i) we explore language communication aspects 
between humans and robots; (ii) we analyze RoboCup soccer, in particular the four-
legged league, as cognitive platform; (iii) we describe current experiments and 
results in human-robot coaching in the four-legged league; and, (iv) we provide a 
discussion on current and future directions for this work. 
 
Ideally, research in Human-Robot Interaction will allow natural, ergonomic, and 
optimal communication and cooperation between humans and robotic systems.  In 
order to make progress in this direction, we have identified two major requirements:  
First, we must work in real robotics environments in which technologists and 
researchers have already developed an extensive experience and set of needs with 
respect to HRI.  Second, we must develop a domain independent language 
processing system that can be applied to arbitrary domains and that has 
psychological validity based on knowledge from social cognitive science. In response 
to the first requirement regarding the robotic context, we have studied two distinct 
robotic platforms.  The first, the Event Perceiver is a system that can perceive human 
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events acted out with objects, and can thus generate descriptions of these actions. 
The second is the Sony AIBO robot having local visual processing capabilities in 
addition to autonomous mobility. In the latter, we explore human-robot interaction 
in the context of four-legged RoboCup soccer league. From the psychologically valid 
language context, we base the interactions on a model of language and meaning 
correspondence developed by Dominey et al. (2003) having described both 
neurological and behavioral aspects of human language, and having been deployed 
in robotic contexts, and second, on the notion of shared intentions or plans by 
Tomasello (2003) and Tomasello et al. (2006) that will be used to guide the 
collaborative interaction between human and robot.  In section 2 we describe our 
spoken language approach to cognitive robotics; in section 3 we overview the 
RoboCup four-legged soccer league; in section 4 we describe current experimental 
results with the Sony AIBO platform in human-robot interaction; section 5 provides 
conclusions. 

2. Cognitive Robotics: A Spoken Language Approach 
In Dominey & Boucher (2005a, 2005b) and Dominey & Weitzenfeld (2005) we 
describe the Event Perceiver System that could adaptively acquire a limited 
grammar based on training with human narrated video events. An image processing 
algorithm extracts the meaning of the narrated events translating them into 
action(agent, object, recipient) descriptors. The event extraction algorithm detects 
physical contacts between objects, see Kotovsky & Baillargeon (1998), and then uses 
the temporal profile of contact sequences in order to categorize the events. The visual 
scene processing system is similar to related event extraction systems that rely on the 
characterization of complex physical events (e.g. give, take, stack) in terms of 
composition of physical primitives such as contact, e.g. Siskind (2001) and Steels & 
Bailled (2002). Together with the event extraction system, a speech to text system was 
used to perform translations sentence to meaning using different languages 
(Dominey & Inui, 2004). 

2.1. Processing Sentences with Grammatical Constructions 

Each narrated event generates a well formed <sentence, meaning> pair that is used as 
input to a model that learns the sentence-to-meaning mappings as a form of template 
in which nouns and verbs can be replaced by new arguments in order to generate the 
corresponding new meanings. These templates or grammatical constructions, see 
Goldberg (1995) are identified by the configuration of grammatical markers or 
function words within the sentences (Bates et al., 1982).  
 
Each grammatical construction corresponds to a mapping from sentence to meaning. 
This information is also used to perform the inverse transformation from meaning to 
sentence. For the initial sentence generation studies we concentrated on the 5 
grammatical constructions shown in Table 1. These correspond to constructions with 
one verb and two or three arguments in which each of the different arguments can 
take the focus position at the head of the sentence. On the left example sentences are 
presented, and on the right, the corresponding generic construction is shown. In the 
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representation of the construction, the element that will be at the pragmatic focus is 
underlined. 
 
 Sentence Construction <sentence, meaning>  
1 The robot kicked the ball <Agent event object, event(agent, object>  
2 The ball was kicked by the robot <Object was event by agent, event(agent, object>  
3 The red robot gave the ball to 

the blue robot 
<Agent event object to recipient,  
             event(agent, object, recipient)> 

4 
 

The ball was given to the blue 
robot by the red robot  

<Object was event to recipient by agent, 
           event(agent, object, recipient)> 

5 The blue robot was given the 
ball by the red robot 

<Recipient was event object by agent, 
           event(agent, object, recipient)> 

Table 1.   Sentences and corresponding constructions. 
 
This construction set provides sufficient linguistic flexibility, for example, when the 
system is interrogated about the red robot, the blue robot or the ball. After describing 
the event give(red robot, blue robot, ball), the system can respond appropriately with 
sentences of type 3, 4 or 5, respectively. Note that sentences 1-5 are specific sentences 
that exemplify the 5 constructions in question, and that these constructions each 
generalize to an open set of corresponding sentences.   
 
We have used the CSLU Speech Tools Rapid application Development (RAD) (CSLU, 
2006) to integrate these pieces, including (a) scene processing for event recognition, 
(b) sentence generation from scene description and response to questions, (c) speech 
recognition for posing questions, and (d) speech synthesis for responding. 

2.2. Shared Intentions for Learning 

Perhaps the most interesting aspect of the three part “command, interrogate, teach” 
scenario involves learning.  Our goal is to provide a generalized platform 
independent learning capability that acquires new <percept, response> constructions.  
That is, we will use existing perceptual capabilities, and existing behavioral 
capabilities of the given system in order to bind these together into new, learned 
<percept, response> behaviors.   
 
The idea is to create new <percept, response> pairs that can be permanently archived 
and used in future interactions. Ad-hoc analysis of human-human interaction during 
teaching-learning reveals the existence of a general intentional plan that is shared 
between teachers and learners, which consists of three components. The first 
component involves specifying the percept that will be involved in the <percept, 
response> construction. This percept can be either a verbal command, or an internal 
state of the system that can originate from vision or from another sensor. The second 
component involves specifying what should be done in response to this percept.  
Again, the response can be either a verbal response or a motor response from the 
existing behavioral repertoire. The third component involves the binding together of 
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the <percept, response> construction, and validation that it was learned correctly. This 
requires the storage of this new construction in a construction database so that it can 
be accessed in the future. This will permit an open-ended capability for a variety of 
new types of communicative behavior. 
 
In the following section this capability is used to teach a robot to respond with 
physical actions or other behavioral responses to perceived objects or changes in 
internal states. The user enters into a dialog context, and tells the robot that we are 
going to learn a new behavior. The robot asks what is the perceptual trigger of the 
behavior and the human responds. The robot then asks what is the response behavior, 
and the human responds again. The robot links the <percept, response> pair together 
so that it can be used in the future. 
 
Having human users control and interrogate robots using spoken language results in 
the ability to ergonomically teach robots.  Additionally, it is also useful to execute 
components of these action sequences conditional on perceptual values.  For example 
the user might want to tell the robot to walk forward until it comes close to an 
obstacle, using a "command X until Y" construction, where X corresponds to a 
continuous action (e.g. walk, turn left) and Y corresponds to a perceptual condition 
(e.g. collision detected, ball seen, etc.). 

3. RoboCup Soccer: Four-Legged League 
In order to demonstrate the generalization of the spoken language human-robot 
interaction approach we have begun a series of experiments in the domain of 
RoboCup Soccer (Kitano, 1995), a well documented and standardized robot 
environment thus provides a quantitative domain for evaluation of success. For this 
project we have chosen as testing platform the Four-Legged league where ITAM’s 
Eagle Knights team regularly competes (Martínez-Gómez et al. 2005;  Martínez-
Gómez & Weitzenfeld, 2005). In this league two teams of four robots play soccer on a 
6m by 4m carpeted soccer field using Sony’s Four-Legged AIBO robots (RoboCup, 
2004), as shown in Figure 1. Robots in this league have fully autonomous processing 
capabilities including a local color-based camera, motors to control leg and head 
joints, and a removable memory stick where programs can be loaded. The robots also 
include wireless communication capabilities to interact with other robots in the field 
as well as computers outside. In addition to the two colored goals, four colored 
cylinders are used in helping the robots localize in the field. To win, robots need to 
score as many goals as possible in the opposite goal. Ball is orange and robots use 
either a red or blue colored uniform. As in human soccer, good teams need to 
perform better that opponents in order to win, this includes being able to walk faster, 
process images, localize and kick the ball in a more efficient way, and have more 
advanced individual behaviors and more evolved team strategies.  
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Fig. 1. Four-Legged Soccer League. Two teams of four robots play against each other 
in a 6m by 4m carpet. AIBOs from Sony are used having fully autonomous control. 
Sensors include a local color-based camera having images processed by a local CPU 
sending output commands to motors controlling joints in the four legs and heads. 
The AIBO also includes wireless communication capabilities to interact with other 
robots in the field and computers outside. 
 

Fig. 2. Four-Legged System Architecture. The system includes the following 
processing components: sensors, actuators, motion, vision, localization, behaviors 
and wireless communication. The latter is used to share information with other 
robots through the game controller responsible of informing all robots of the state of 
the game. 

6 m 

4 m 
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A typical four-legged system architecture shown in Figure 2 consists of the following 
modules: 
• Sensors. Primary sensors include a color camera and feedback from motors. The 

raw camera image is passed to a vision module segmenting objects of interest. 
Other sensors are used to obtain complementary information on the robot such as 
joints. 

• Actuators. The main robot actuators are head and leg motor controlling joints for 
walking and head turns. 

• Motion. The motion module is responsible for robot movements, such as walk, 
run, kick, pass, turn, move the head, etc. It receives commands from the behavior 
module with output sent to the corresponding actuators representing individual 
leg and head joint motor control. Robot motions are adapted according to team 
roles, for example, the goalie has different defensive poses in contrast to other 
team players. This also applies to different head and ball kicks.  

• Vision. The vision module receives a raw image from the camera segmenting 
objects according to color and shape. Objects recognized include ball, robots, 
cylinder landmarks and goals. More details are given in Section 3.1. 

• Localization. The localization module uses visual information to provide a 
reliable localization of the robot in the field. Colored cylinders, goals and white 
lines are used for this task. More details are given in Section 3.2. 

• Behaviors. The behaviors module makes decisions affecting individual robots 
and team strategies. It takes input from sensors and localization system to 
generate commands sent to motion and actuators modules. Further details are 
given in Section 3.3. 

• Wireless Communication. Robots include wireless communication to share 
information and commands with the external Game Controller or among robots. 
Data transmitted includes information such as player id, location of ball if seen, 
distance to the ball, robot position and ball position. 

3.1. Vision 
The vision module segments incoming camera images to recognize objects of interest 
from color and shape information. The vision architecture consists of the following 
stages: image capture, color calibration, segmentation, recognition and identification, 
as shown in Figure 3. The vision architecture is common to many leagues in 
RoboCup, including the Mid-size league havign a global viewing camera and the 
Small-size league having an aereal camera (Martínez-Gómez & Weitzenfeld, 2004). 

 
In order to recognize and identify objects of interest in the image appropriate 
calibration needs to be performed to adapt to existing lighting conditions. We take 
initial photos of objects of interest and then select colors that we want to distinguish 
during segmentation. Figure 4 shows sample output of the segmentation calibration 
process. Images on the first and third columns are segmented to images in the second 
and fourth columns, respectively. Colors of interest are orange, green, yellow, pink 
and blue. All other colors are left as black in the images. 
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Fig. 3. Vision Architecture. The vision module includes the following stages: image 
capture, color calibration, segmentation, recognition and identification. Output is in 
the form of recognized and identified objects. 

 

Fig. 4. Color segmentation. Images on the first and third columns are segmented to 
images in the second and fourth columns, respectively. Colors of interest are orange, 
green, yellow, pink and blue. All other colors are left as black in these images. 

After color regions are obtained, objects are recognized according to certain 
requirements to allow some confidence that the region being analyzed corresponds 
to an object of interest. For example, the ball must have green in some adjacent area 
with a similar criteria used to identify goals. The recognition of landmarks is a little 
more complex, nevertheless after more elaborated comparison landmarks are 
identified. Finally, recognized objects are identified depending on color 
combinations, for example, preestablished landmark “1” and landmark “2”.  

3.2. Localization 

To be successful robots need to localize in the field in an efficient and reliable way. 
Localization includes computing distances to known objects or landmarks, use of a 
triangulation algorithm to compute exact positioning, calculate robot orientation 
angles, and correct any resulting positioning errors, as described in Figure 5. 
 

Distances to Objects. The first step in localizing is to obtain distances from the robot 
to identified objects in the field. The more objects the robot can distinguish in the 
field the more reliable the computation. After making several experiments, we 
developed a simple algorithm that computes distances to objects by using a cubic 
mathematical relationship that takes as parameter the viewed object area and returns 
the distance to that object. The distance range tested was from 15 centimeters to 4 
meters. Closer than 15 cm or beyond 4 m it becomes harder to compute distances or 
distinguish between objects and noise, respectively.  

IMAGE 
CAPTURE 

SEGMENTATION 

COLOR 
CALIBRATION 

RECOGNITION IDENTIFICATION 
Object 

Recognition & 
Identification
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Fig. 5. Localization system block diagram. Localization involves computing 
distances to known objects in the field, triangulations based on landmarks and goals, 
angles to landmarks and goals, and computing error corrections to obtain reliable 
positioning. 

Triangulation Algorithm. Following distance computation we apply a triangulation 
method from two marks to obtain the position of the robot in the field. Triangulation 
results in a very precise positioning of the robot in a two dimensions plane. If a robot 
sees one landmark and can calculate the distance to this landmark, the robot could be 
anywhere in a circumference with origin in the landmark, and radio equal to the 
distance calculated. By recognizing two landmarks the robot can compute its location 
from the intersection of two circumferences, as shown in Figure 6. Note that the robot 
could be in one of two intersection points in the circumferences, although one of 
these two points will fall outside the field of play. 

 
Fig. 6. Triangulation from two landmarks. By calculating distance to two different 
landmarks the robot can compute its position in the field. 

Angle Calculation. Once robot position is computed orientation is calculated to 
complete localization. Two vectors are calculated with origin at the robot pointing to 
the marks used as references for triangulation, as shown in Figure 7. Orientation 
calculation is usually more precise than positioning while also being more important 
to the game. Kicking the ball in the right direction is quite critical to winning. 
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Fig. 7. Robot orientation. By computing vectors to marks (or goals) the robot may 
calculate its orientation in the field. 

Correction Algorithm. Robot positioning resulting from the localization algorithm 
usually results in inconsistencies between contiguous frames. To stabilize localization 
computation correction algorithms are necessary starting by smoothing historic 
measurements. To reduce variation of the output signal for the triangulation 
algorithm the following filter function shown in equation 1 can be used where s(x) 
represents the updated position value as a function of previously computed x 
position values taking an average over n historic samples.  

 n

ix
xs

n

i
∑
== 1

)(
)(                (1) 

Figure 8 shows sample output from this filter correction. Original signals can 
produce variations of 10% in contiguous positions. By applying the filter this 
variation can be reduced to less than 3%, see Martínez-Gómez & Weitzenfeld (2005) 
for more details.  

 

 
Fig. 8. Correction Algorithm. Abrupt variations in positioning are caused by 
resolution related errors. To reduce this variability data can be smoothed by 
averaging with a historic filter. 

In addition to variances in positioning, the large size of the robots, around 20cm in 
length and 10cm in width, requires a positioning precision of at least half the size of 
the robot. Furthermore, positioning in the field like in human soccer does not require 
exact knowledge of location as opposed to orientation. For this purpose localization 
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by field regions can be more effective than knowing exact positioning. In Figure 9 the 
complete field is divided into twelve similarly sized areas to provide rough 
localization in the field.  During experimentation, localization in some regions 
resulted in larger errors due to changes in illumination.  

 
Fig. 9. Localization by regions. While orientation in the field is critical in moving 
and kicking the ball in the right direction, positioning does not require very high 
precision as in human soccer. Knowing positioning in relation to certain regions in 
the field provides enough information for play as shown in the diagram with a 3 by 4 
field subdivision. 

 
Regions can be defined in a heterogeneous way as well, e.g. having a specific local 
goal area while dividing middle field areas with coarser granularity than areas closer 
to the goals. Also, probabilistic methods not described in the chapter are usually 
used to localize when occlusions occur during a game. 

3.3. Behaviors 

The behavior module receives input information from sensors, vision and 
localization in order to compute individual and team behavior. Output from 
behavior decisions are sent to motion and actuators. In defining team robot 
behaviors, we specify different player roles, e.g. Goalkeeper, Attacker, and Defender. 
Each role behavior depends on ball position, state of game and overall team strategy. 
 
Goalkeeper basic behaviors are described by a state machine as shown in Figure 10:  
• Initial Position. Initial posture that the robot takes when it is turned on. 

Depending on its ability to localize robot may autonomously move to its initial 
position. 

• Search Ball. An important aspect of the game is searching for the ball around the 
field. If communication is enabled among robots, searching may be made more 
efficient by doing this task as a team with individual robots informing others 
where the ball is when found. 

• Search Goal. The ultimate objective of the goalkeeper is to defend its own goal. 
To achieve this it must always know its relative position. Sometimes the 
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goalkeeper gets away from its area for a special defensive move and needs to 
return to the goal by searching around. 

• Reach Ball. After searching and finding the ball, the robot can walk towards it in 
order to take possession or simply kick the ball. Additional plays include 
reaching the ball up to certain distance in order to defend the goal from a possible 
ball kick by an opponent.  

• Reach Goal. After searching and finding the goal, the goalkeeper moves towards 
it to relocate on the goal line in the middle of the goal. 

• Kick ball. The goalkeeper can kick the ball in different ways to get it out of its 
own goal. 

 

Fig. 10. Goalkeeper Basic Behavior. The basic individual goalkeeper state machine 
includes activities starting from an initial position followed by search ball, search 
goal, reach ball, reach goal and kick ball. 

Attacker and Defender basic common individual behaviors are described by a state 
machine as shown in Figure 11: 
• Initial Position. Initial posture that the robot takes when it is turned on. 

Depending on the ability to localize robot may autonomously move to their 
initial positions. 

• Search Ball. An important aspect of the game is searching for the ball around the 
field. If communication is enabled among robots, searching may be made more 
efficient by doing this task as a team with individual robots informing others 
where the ball is when found. 

• Reach Ball. After searching and finding the ball, the robot can walk towards it in 
order to move with it or kick the ball. Additional plays include turning with the 
ball and reaching the ball with different orientations. 
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• Explore Field. Exploring the field is a more extended search than the search ball 
behavior in that it can walk throughout the arena not only looking for the ball 
but also searching for goals and landmarks. 

• Kick Ball. The robot can kick the ball in different ways such as to score a goal in 
the case of an attacker or to simply kick it forwards in the case of a defender. 

 
Fig. 11. Attacker and Defender Basic Behavior. The basic individual attacker and 
defender state machine includes common activities starting from an initial position 
followed by search ball, explore field, reach ball, and kick ball. 

4. Human-Robot Coaching in RoboCup Soccer 
While no human intervention is allowed during a RoboCup Four-Legged soccer 
league game, in the future humans could play a decisive role analogous to real soccer 
coaches. Coaches could be able to adjust in real-time their team playing strategies 
according to the state of the game. RoboCup already incorporates a simulated 
coaching league where coaching agents can learn during a game and then advice 
virtual soccer agents on how to optimize their behavior accordingly, see (Riley et al., 
2002; Kaminka et al. 2002). In this section we describe our most recent work in 
human-robot interaction with Sony AIBOs. 

4.1. Human-Robot Architecture 

The human-robot interaction architecture is illustrated in Figure 12. The spoken 
language interface is provided by the CSLU-RAD framework while communication 
to the Sony AIBO robots is done in a wireless fashion via the URBI platform (URBI, 
2006). The URBI system provides a high level interface for remotely controlling the 
AIBO. Via this interface, the AIBO can be commanded to perform different actions as 
well as be interrogated with respect to various internal state variables. Additionally, 
URBI provides a vision and motion library where higher level perceptions and 
movements can be specified. (The AIBO architecture shown at the right hand side of 
Figure 12 describes the robot processing modules previously shown in Figure 2.) 
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Fig. 12. CSLU-URBI-AIBO system architecture. The left portion of the diagram 
shows a Human Coach interacting with the CSLU RAD spoken language system that 
in turns interacts via wireless communication with the URBI interface at the AIBO. 
The diagram to the right shows the internal AIBO processing modules: Sensors, 
Actuators, Vision, Motion, Localization, Behaviors and Wireless Communication. 

4.2. Command, Interrogate and Teach Dialogs 

In order to demonstrate the human coaching model we have developed and 
experimented with simple dialogs that let the user: (1) command the robot to perform 
certain actions including perception related actions; (2) interrogate the robot with 
specific questions about its state and corresponding perceptions; and (3) teach the 
robot to link a sequence of lower level behaviors into higher level ones.  
 
Command. We define a set of action-only and action perception commands. Action-
only commands i.e. no perception, include: Stop, Move, Turn, Turn Head, and Kick 
Ball. Depending on the commands, these may include arguments such as magnitude 
of rotation, and movement in degrees or steps, etc. For example a rotation command 
would be Turn 180 degrees and a movement command would be Move 4 steps. It 
should be noted that at this level commands such as Kick Ball would not use any 
perceptual information, i.e. the resulting kick will depend on the current robot 
orientation. We also define a set of action-perception commands requiring the full 
perception-action cycle, i.e. the action to be performed depends on the current robot 
perceptions. These commands include: Kick Ball with a specified direction; Reach Ball 
moving to a position behind the ball pointing towards the goal; Initial Position during 
game initialization requiring localization in the field; Pass the Ball to gently kick the 
ball to another team robot; Move to Location specifying a position in the field where to 
move; Search Ball resulting in robot looking for a ball nearby; Explore Field resulting in 
a more extensive search for the ball; Defend Goal resulting in all robots moving close 
to the goal requiring knowledge of the robot location in the field; Defend Kick in 

Vision 

Localization 

Behaviors  

Wireless 
Communication 

Motion 

Sensors Actuators 
Human Coach 



Cognitive Robotics: Robot Soccer Coaching using Spoken Language 
trying to block a kick from the other team, requiring knowledge of ball location, and 
Attack Goal similar although opposite in behavior to defending goal.  
 
Interrogation. We define state and perception interrogation commands returning 
information on current actions or behaviors. State interrogations include for example: 
What was your last action, e.g. kicked the ball; Why did you take the last action, e.g., I saw 
the ball, so I moved towards it; What is your current behavior, e.g. I’m searching for the 
ball; What is your current role in the game, e.g. I am the goalie. Perception 
interrogations include for example: Do you see the ball returning e.g. I do, I don’t; What 
is your distance to the ball, returning e.g. 30 centimeters; What is your current orientation, 
returning e.g. 45 degrees (in relation to field coordinate system); What is your current 
position, returning e.g. I am in region 9; What is the position of object X returning an 
estimate of its position. 
 
We have already implemented in the AIBO a number of these commands and 
interrogations.  A sample command and interrogation dialog is shown in Table 2 
corresponding to “Go get the ball and walk it into the goal”.  
 

Robot: Welcome to the LAFMI Human-Robot Interaction Demonstration. 
 I am the AIBO… 
Human: Do you see the ball? 
Robot: Looking for the ball…I don’t see anything. 
Human: Turn right.  
Robot: Turning right. (Turns right) 
Human: Do you see the ball? 
Robot: Looking for the ball… I see the ball. 
Human: Get the ball. 
Robot: Going for the ball. (Starts walking to the ball). 
Human: Stop. Turn right. 
Robot: Turning right. (Turns right but misses the ball) 
Human: Back up. 
Robot: Back up. (Backs up) 
Human: Turn left. 
Robot: Turning left. (Turns left but misses the ball) 
Human: Turn right. 
Robot: Turning right. (Turns right and catches the ball) 
Human: Walk. 
Robot: Walking. (Starts walking, pushing the ball towards the goal) 
Human: Walk. 
Robot: Walking. (Keeps walking, pushing the ball and “scoring”) 

Table 2. Sample human-robot dialog. The dialog shows sample spoken interaction 
with the human for commanding and interrogating the robot.  

Teach. The ultimate goal in human-robot coaching in the context of soccer is being 
able to positively affect the team performance during a game. While part of this 
interaction can eventually be carried out by agent coaches inside the robot, it is our 
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goal to define the basic capabilities and communication interactions that human 
coaches should have. For example, being able to transmit strategy knowledge in the 
form “if blocked pass the ball to player behind”. Such a command will modify an internal 
robot database with “if possess(ball) and goal(blocked) then pass(ball)”. 
 
Previous systems allowed the user to use spoken language to teach the AIBO robot 
the association between a name and a single behavior in the robot’s repertoire 
(Dominey et al. 2005).  More recently, we have extended this so that the system can 
associate a sequence of commands with a new name in a macro-like capability.  The 
limitations of this approach result from the fact that all of the motor events in the 
sequence are self contained events whose terminations are not directly linked to 
perceptual states of the system.  We can thus teach the robot to walk to the ball and 
stop, but if we then test the system with different initial conditions the system will 
mechanically reproduced the exact motor sequence, and thus fail to generalize to the 
new conditions. 

 
Nicolescu & Mataric (2001, 2003) developed a method for accommodating these 
problems with a formalized representation of the relations between pre-conditions 
and post-conditions of different behaviors.  In this manner, after the robot has 
performed a human guided action, such as following the human through an obstacle 
course and then picking up an object, the system will represent the time ordered list 
of intervals during which each of the component behaviors is active.  From this list, 
the pre- and post-condition relations between the successive behaviors can be 
extracted, generalized over multiple training trials, and finally used by the robot to 
autonomously execute the acquired behavior.   
 
Boucher and Dominey (2006) builds upon these approaches in several important 
ways. First they enrich the set of sensory and motor primitives that are available to 
be used in defining new behaviors. Second, they enrich the human-robot interaction 
domain via spoken language and thus allow for guiding the training demonstrations 
with spoken language commands, as well as naming multiple newly acquired 
behaviors in an ever increasing repertoire.  Third, they ensure real-time processing 
for both the parsing of the continuous valued sensor readings into discrete 
parameterized form, as well as the generalization of the most recent history record 
with the previously generalized sequence.  This ensures that the demonstration, test, 
correction cycle takes places in a smooth manner with no off-line processing 
required. 
 
Here is a simple example scenario with the AIBO.  In this case the user will teach the 
robot a form of collision avoidance through demonstration.  The user initiates the 
learning by commanding the robot with a spoken command “turn around” that does 
not correspond to a primitive command nor to a previously learned command.  The 
robot thus has no knowledge of what to do, and awaits further instructions.  The user 
commands the robot to “march forward” and the robot starts walking.  The user sees 
that the robot is approaching a wall, and tells the robot to stop.  He then tells the 
robot to turn right.  Behind and to the right of the robot is the red ball.  When the 
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robot has turned away from the wall and is facing the ball the user tells it to stop 
turning, and then tells it that the learned behavior demonstration is over. 
 
Now let us consider the demonstration in terms of the commands that were issued 
by the user, and executed by the robot, and the preconditions that could 
subsequently be used to trigger these commands. The robot was commanded to 
“turn around.”  Because it had no representation for this action, it awaited further 
commands. The robot was then commanded to walk.  Before it collided with the wall 
the robot was commanded to stop walking.  It was then commanded to turn right, 
and to stop when it was in front of the red ball.  Now consider the perceptual 
conditions that preceded each of these commands, which could be used in a future 
automatic execution phase to sequentially trigger the successive commands.  The 
pertinent precondition to start walking was that the command to “turn around” had 
been issued.  The pertinent precondition to stop walking was the detection of an 
obstacle in the “near” range by the distance sensor in the robots face.  The pertinent 
preconditions for subsequently turning right are that the robot is near something, 
and that it has stopped walking.   
 
The goal then is for the system to encode the temporal sequence of all relations 
(which include user commands and perception values) in a demonstration run, and 
then to determine what are the pertinent preconditions for each commanded action 
relation.  Likewise, it may be the case that perceptual relations were observed during 
the demonstration that were not pertinent to the behavior that the human intended 
to teach the robot.  The system must thus also be able to identify such “distractor” 
perceptions that occurred in a demonstration, and to eliminate these relations from 
the generalized representation of the behavioral sequence. 

5. Conclusions 
The stated objective of the current research is to develop a generalized approach for 
human-machine interaction via spoken language that exploits recent developments 
in cognitive science - particularly notions of grammatical constructions as form-
meaning mappings in language, and notions of shared intentions as distributed plans 
for interaction and collaboration. In order to do this, we tested human-robot 
interaction initially with the Event Perceiver system and later on with the Sony 
AIBOs under soccer related behaviors. We have presented the system architecture for 
the Eagle Knights Four-Legged team as a testbed for this work. 
 
With respect to social cognition, shared intentions represent distributed plans in 
which two or more collaborators have a common representation of an action plan in 
which each plays specific roles with specific responsibilities with the aim of 
achieving some common goal. In the current study, the common goals were well 
defined in advance (e.g. teaching the robots new relations or new behaviors), and so 
the shared intentions could be built into the dialog management system. We plan to 
continue this work by experimenting with more evolved behaviors in testing full 
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coaching capabilities in the soccer scenario. Videos for several human-robot dialogs, 
including the previous one, can be found in Dominey & Weitzenfeld (2006). 
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