
ASL/NSL: A Multi-level Approach to Neural-based Architectures1

Alfredo Weitzenfeld
Departmento Académico de Computación

Instituto Tecnológico Autónomo de México (ITAM)
Río Hondo #1, San Angel Tizapán, CP 01000

México DF, MEXICO
email: alfredo@lamport.rhon.itam.mx

tel: (525) 6284060
fax: (525) 6162211

Keywords: Modules, Neural Networks, Hierarchical, Simulation, Architecture

Abstract

Neural-based systems are quite common in solving different technological applications. For example, in
autonomous robot agents, agents vary in their sophistication, from those eliciting simple behaviors to those trying
to imitate nature as close as possible both in their simulated behavior as well as in their neural structure. As the
level of complexity increases, the corresponding computational models become more sophisticated involving multi-
level approaches to enable top-down and bottom-up designs. The ASL/NSL architecture was designed with such
purpose in mind. At the highest level, animal-like behaviors such as prey acquisition and predator avoidance are
decomposed into lower level ones such as moving forwards or orienting. At the structural level, depending on
available data, behaviors are mapped into specialized neural modules or if unavailable, they are implemented
through other AI techniques. In this paper we describe the basic ASL/NSL computational model enabling the
integration of neural network implementations as part of more complex AI systems.

                                                       
1 We thank the NSF-CONACyT collaboration grant (#IRI-9522999 in the US and #546500-5-C018-A in Mexico), the
CONACyT REDII grant in Mexico, as well as the "Asociación Mexicana de Cultura, A.C.".



1

Introduction
In order to integrate neural-based subsystems in complex AI systems, we have developed a multi-level software

development approach separating between an application's emerging behavior and its corresponding underlying
structure. Our approach, known as the ASL/NSL computational model, is based at the behavior level on ASL
(Abstract Schema Language) [11] - the term schema represents a behavior module or agent [2] and at the structure
level, it becomes implemented (not exclusively) with neural networks on NSL (Neural Simulation Language) [12].
The ASL/NSL computational model has been used in many applications domains such as vision, visuomotor
coordination, motor control (see [13]). In particular it has been used to model animal behaviors such as the praying
mantis search for a habitat [4] and the frog's learning to detour behavior [7]. In general, most of the related
modeling work as either concentrated at the higher-level behavior level or at the lower structure level due to the
involved complexity and processing requirements. The present work tries to fill this gap by integrating complex
neural underlying structures [3] into full sets of behaviors in a distributed manner.

Behavior Modules (Schemas)
The basic ASL/NSL computational model defines a tree-like module hierarchy as shown in Figure 1.

Starting by the root module (known as the
model), modules are further decomposed
into additional submodules, having no
limit on how many levels this may reach.
At the same abstraction level, modules are
interconnected (solid arrows), while at
different levels, modules have their task
delegated (dashed arrows). Networks of
submodules – module assemblages – are
seen in their entirety in terms of a single
higher-level module and may be
implemented independently from each
other in both top-down and bottom-up
fashion, an important benefit of modular
design. At the higher abstraction levels,
the detailed module implementation is left
unspecified, only specifying the module's
interface and what is to be achieved. At
the lowest level, behavior is implemented
in the form of structure modules, such as
neural networks.

Module Level 1

data in
data out

Neural Module Other AI Module

Module Level 2

Module
Behavior

Structure

Figure 1. The ASL/NSL computational model is based on
hierarchical interconnected modules. A behavior module at a higher
level (level 1) is decomposed (dashed lines) into additional
interconnected (solid arrow) behavior submodules (level 2). At the
lowest level, structure modules are implemented by neural networks
or other AI techniques.

As a computational unit, every module incorporates its own local structure and control mechanisms. Every
module defines an external interface made of a set of unidirectional input and output ports supporting data passing
between modules, as shown in Figure 2, together with a set of public methods that can be externally invoked from
other modules.

Communication between modules is in the form of
asynchronous message passing for both data and
methods. Internally, communication is hierarchically
managed through anonymous data port reading and
writing. Externally, communication is managed through
dynamic port connections (solid arrows) - links between
output ports in one module to input ports in another
module - and relabelings (dashed arrows) - module
ports at one level in the hierarchy are linked to similar
input or output ports at a different level.

......... ...

din1

dinn

dout1

doutm

Module

Figure 2. Each module may contain multiple input,
din1,...,dinn, and output, dout1,...,doutm, ports for
unidirectional communication.



2

The hierarchical port management approach enables the development of distributed architectures where
modules may be designed and implemented independently and without prior knowledge of the complete model or
their final execution environment, encouraging component reusability.

For example, let's consider the depth perception problem where a three dimensional scene is presented to the
two eyes. In general a point in space results in a left eye projection that differs from that in the right eye where this
difference determines the point's actual depth. A whole ray of points results in a single point projection on each
retina corresponding to different depths in space, but points on the two retinas determine a single depth point in
space, the intersection of the corresponding projectors. The depth perception model developed by House [9] uses
two systems to build a depth map, one driven by disparity cues - difference in retina projection - while the other is
driven by accommodation cues - receiving information about focal length. The accommodation driven-field - left to
its own devices - sharpens up the information to yield depth estimates. The disparity driven-field receives
difference in retina projection to suppress ghost targets. The corresponding ASL/NSL model consists of a Stereo s
root module and three interconnected submodules: Retina r, Depth m (accommodation) and s (disparity), as shown
in Figure 3.

The following Java-like ASL/NSL
programming language structure stores the
internal program representation for the Stereo
module definition:

nslModule Stereo (int sizeX,
int sizeY, int sizeR)

{
private Retina

r(sizeX,sizeY,sizeR);
private Depth m(sizeX,sizeY);
private Depth s(sizeX,sizeY);
public NslDinFloat2

in(sizeX,sizeY);
public NslDoutFloat2

out(sizeX,sizeY);
public void makeConn () {

nslConnect(r.a,m.s);
nslConnect(r.d,s.s);
nslConnect(m.mf,s.tf);
nslConnect(s.mf,m.tf);
nslRelabel(in,r.in);
nslRelabel(m.mf,out);

}
public void simRun () { }

}

Depth m

Stereo s

Retina r

mf
s

a
in

in out

Depth s

mf
s

d

tf

tf

Figure 3. The Stereo module contains an in input port and an
out output port. It is further decomposed into a Retina module
containing an input port in and two output ports, d and a, for
disparity and accommodation, respectively. The Depth module
consists of an input port s, receiving data from the Retina, a
second input port tf, receiving input from the other Depth
module, and an output port mf.

In the above program definition, a Stereo module is defined having three instantiation parameters: sizeX, sizeY
and sizeR. The next two lines specify the Retina and two Depth submodule private instantiations. The external
module interface consists of a public input port, in, receiving 3D visual input and a public output port, out,
communicating the Stereo processing results. We then define a makeConn method where iconnections and relabels
are made between the three submodule ports in correspondence to Figure 3. Finally the simRun processing method
is left empty since the actual behavior is implemented by the three neural submodules.

Structure Modules (Neural Networks)
The basic ASL/NSL module is extended to implement structural modules as well. In particular, we emphasize

neural modules - neural network implementations consisting of a set of interconnected neurons, as shown in Figure
4. In our previous depth perception example each Depth module becomes implemented by a neural accommodation
or disparity depth map, respectively. The Depth neural network is described by the following set of equations,
where m corresponds to the excitatory field, u is the inhibitory field and s receives input from the retina:

( ) ( ) ( ) ijmjuijtijmij
ij

m shugwtfwmfwm
t

m
+−∗−∗+∗+−=

∂
∂

τ , ( ) ( )ijij msigmamf =



3

( ) u
i

ijj
j

u hmfu
t

u
−+−=

∂
∂ ∑τ , ( ) ( )jj urampug =

The two depth systems are intercoupled so that a point in the accommodation field excites the corresponding
point in the disparity field, and viceversa. This intercoupling among the two Depth modules is shown in Figure 5.

Neural Network 
Implementation

Neural Module

Figure 4. Every neural module is
implemented by a neural network.
Although neurons could be treated
themselves as modules for further
refinement, we treat them as separate
entities, thus drawing them as spheres
instead of cubes.

m

u

s

v

d

a

tf

Figure 5. The two interconnected Depth modules can be seen at the
neural level at two interconnected neural networks, the d-s-v disparity
network and the a-m-u accommodation network.

The Depth neural module is programmed as follows (note the similarity with the Stereo module template):
nslModule Depth (int sizeX, int sizeY)
{

public NslDinFloat2 s(sizeX,sizeY); 
public NslDinFloat2 tf(sizeX,sizeY); 
public NslDoutFloat2 mf(sizeX,sizeY); 
private NslFloat2 mp(sizeX,sizeY); 
private NslFloat1 up(sizeY); 
private NslFloat1 uf(sizeY); 
public void simRun () {

mp = nslDiff(mp,-mp+wm@mf+wt@tf-wu*nslExpandRows(uf,mp.getRows())-hm+s);
mf = nslSigmoid(mp);
up = nslDiff(up,-up+nslReduceRows(mf)-hu); 
uf = nslRamp(up);

}
}

While we have omitted part of the declarations in the above definition, we want to highlight the simRun
method implementing the neural dynamics. Since we use the leaky integrator neuron model [1], a neuron m is
described by two values, its membrane potential mp depending on the neuron's previous history and external input,
and the firing rate mf depending only on its membrane potential and computed according to some threshold
function.

A More Complex Example
In Figure 6 we show a simplified diagram of a more complex model involving a full set of behaviors

implemented at the structure level by a number of biologically inspired neural networks. The modeled behaviors
correspond to the toad's prey acquisitions and prey avoidance model [6]. The highest level, schema level 1,
describes the different behaviors being modeled, prey approach and predator avoid, together with perceptual and
motor schemas. In this example, we include a visual input and four types of motor action: forward, orient, snap and
duck. Some of the schemas at this level are delegated to the next level down, schema level 2, where schemas



4

perform more refined tasks. In this model, both prey approach and predator avoid, delegate their tasks to a schema
assemblage composed of a prey/predator recognizer, a prey/predator selector, depth and heading, translators and
maps. Next level down, the different neural networks implement the neural tasks through neural processing,
known as neural schemas. In particular neural schemas in this model correspond to Retina [10], Tectum [5],
Maximum Selector [8], and Cue Interaction ) [9] (Depth only modules from the depth perception neural model).

Discussion
The work presented here has been

motivated by ethological, physiological and
anatomical studies of vertebrate animals. This
work has resulted in multiple specialized
neural models serving as the underlying
structural implementations in higher level
behaviors. We are currently experimenting
with distributed simulation of such models [14]
as well as its application in robotics [4]. Since
modules have been developed independently
from each other actual input and output
dynamics may not be easily matched among
them. Current challenges to solve these
problems involve the incorporation of different
simulation frequencies in different modules to
match varying temporal dynamics as well as
matching the type of data being transmitted
among modules.

Visual

Predator Avoid

Cue 
Interaction

Heading
Map

Heading
Transaltor

Prey Approach

Snap

Forward

Orient

Duck

Maximum
Selector 

Prey/Predator
Recognizer

Retina

Prey/Predator
Selector

Depth
Map

Depth
Transaltor

Tectum

Schema Level 2

Neural Level

Schema Level 1

Figure 6. Module hierarchy for prey acquisition and predator
avoidance behaviors. The top two levels correspond to behavioral
levels (schema levels 1 and 2) and the lower level corresponds to
structural neural level.

References
[1] Arbib, M.A., The Metaphorical Brain 2: Neural Networks and Beyond, pp. 124-126. Wiley Interscience, 1989.
[2] Arbib, M.A., Schema Theory, in the Encyclopedia of Artificial Intelligence, 2nd Edition, Editor Stuart

Shapiro, 2:1427-1443, Wiley, 1992.
[3] Arbib, M.A., Erdi, P. and Szentagothai, J., Neural Organization: Structure, Function and Dynamics, MIT

Press, 1998.
[4] Arkin, R.C., Ali, K., Weitzenfeld, A., Cervates-Perez, F., "Behavioral Models of the Praying Mantis as a Basis

for Robotic Behavior'', en Journal of Robotics and Autonomous Systems, 2000 (to be published).
[5] Cervantes-Perez, F., Lara, R., and Arbib, M.A., A neural model of interactions subserving prey-predator

discrimination and size preference in anuran amphibia, Journal of Theoretical Biology, 113, 117-152, 1985.
[6] Cobas, A., and Arbib, M.A., Prey-catching and Predator-avoidance in Frog and Toad: Defining the Schemas, J.

Theor. Biol 157, 271-304, 1992.
[7] Corbacho, F., and Arbib M. Learning to Detour, Adaptive Behavior, Volume 3, Number 4, pp 419-468, 1995.
[8] Didday, R.L., A model of visuomotor mechanisms in the frog optic tectum, Math. Biosci. 30:169-180, 1976.
[9] House, D., Depth perception in frogs and toads: A study of in neural computing, in Lecture notes in

Biomathematics, 80, Springer-Verlag, 1989.
[10] Teeters, J.L., and Arbib, M.A., A model of the anuran retina relating interneurons to ganglion cell responses,

Biological Cybernetics, 64, 197-207, 1991.
[11] Weitzenfeld, A., ASL: Hierarchy, Composition, Heterogeneity, and Multi-Granularity in Concurrent Object-

Oriented Programming, Proceedings of the Workshop on Neural Architectures and Distributed AI: From
Schema Assemblages to Neural Networks, USC, October 19-20, 1993.

[12] Weitzenfeld, A., Arbib, M.A., NSL, Neural Simulation Language, in Neural Networks Simulation
Environments, Editor J. Skrzypek, Kluwer, 1994.

[13] Weitzenfeld, A., Arbib, M., Alexander, A., NSL - Neural Simulation Language: System and Applications,
MIT Press, 2000 (to be published).

[14] Weitzenfeld, A., Peguero, O., Gutierrez, S., NSL/ASL: Distributed Simulation of Modular Neural Networks,
in Proc of MICAI 2000, Acapulco, Mexico (to be published).


