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Abstract

The study of biological systems has inspired the development of a large number of neural network
architectures and robotic implementations. Through both experimentation and simulation biological
systems provides a means to understand the underlying mechanisms in living organisms while inspiring the
development of robotic applications. Experimentation, in the form of data gathering (ethological
physiological and anatomical), provides the underlying data for simulation generating predictions to be
validated by theoretical models. These models provide the understanding for the underlying neural
dynamics, and serve as basis for simulation and robotic experimentation. Due to the inherent complexity of
these systems, a multi-level analysis approach is required where biological, theoretic and robotic systems
are studied at different levels of granularity. The work presented here overviews our existing modeling
approach and describes current simulation results.

1 Introduction
The study of biological systems comprises a cycle of biological experimentation, computational modeling and
robotics experimentation, as depicted in Figure 1. This cycle serves as framework for the study of the underlying
neural mechanisms responsible for behavior in animals and serving as inspiration in designing robotic systems.
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Figure 1. Framework for the study of living organisms through cycles of biological experimentation,
computational modeling, and robotics experimentation.

To address the underlying complexity in building biologically inspired robotic systems we have developed a multi-
level analysis approach integrating across different modeling and simulation levels studied primarily with respect to
four different ones: (1) autonomous robotic agents, (2) behavior, (3) neural networks, and (4) detailed neurons.

1. At the highest level, autonomous robotic agents are designed to interact with the world via sensors and
actuators. These agents are simulated in virtual autonomous agents and implemented in real robots.
Autonomous robotic agents are exemplified by biologically inspired systems, such as the computational frog
(rana computatrix) [1], the computational praying mantis [5], the computational cockroach [6], and the
computational hoverfly [11].
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2. At the behavior level, neuroethological data from living animals is gathered to generate single and multi-agent
systems to study the relationship between an agent and its environment, giving emphasis to aspects such as
cooperation and competition between agents.  We describe agent behavior in terms of perceptual and motor
schemas [3] decomposed and refined in a recursive fashion. Behaviors, and their corresponding schemas, are
simulated via the Abstract Simulation Language ASL [22]. Examples of behavioral models include the praying
mantis Chantlitlaxia ("search for a proper habitat") [9] and the frog and toad prey acquisition and predator
avoidance models [12].

3. At the neural network level, neuroanatomical and neuronphysiological data are used to generate perceptual and
motor neural network models corresponding to schemas developed at the behavioral level. These models try to
explain the underlying mechanisms for sensorimotor integration. Neural networks are simulated via the Neural
Simulation Language NSL [24][25]. Neural network models are exemplified by the prey acquisition and
predator avoidance neural models [10] and the toad prey acquisition with detour behavior model involving
adaptation and learning [13].

4. At the detailed neural level, electrochemical neural mechanisms are studied to understand different neural
phenomena such as synaptic plasticity and presynaptic inhibition. A number of models are used depending of
the mechanisms simulated, such as the compartmental model, where a single axon is divided in compartments
[19], and the ion kinetics model, where chemical concentration responsible for electric current is simulated [18].
These models are simulated with systems such as GENESIS [7] and NEURON [17].

2 Modeling Levels
In the following sections we overview the different modeling levels using as an example rana computatrix [Arbib
1987] behaviors inspired on biological studies of frogs and its application to different robotic experiments.

2.1 Autonomous Robotic Agents
Autonomous robotic agents can be either simulated in a virtual world or executed in the real world. In particular,
frogs (and toads) and the corresponding rana computatrix use vision and tact as their primary sensors with legs and
tongue as their primary actuators, both virtual and real. In Figure 2 we show an illustration of a frog in a setup
involving a prey (worm) interposed by a fencepost.

Figure 2. Computational frog in a prey and barrier setup.

2.2 Behaviors
Behaviors are described by ethograms, as the one shown in Figure 3 defining rana computatrix behaviors.
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Figure 3. Rana Computatrix ethogram: Mating, Prey Acquisition and Predator Avoidance schemas
(moving and non-moving objects) [8]. The diagram shows feedback between perceptual schemas
(triangles) and regular schemas (rectangles). Note the hierarchical schema organization. (Acronyms are as
follows: PS - Perceptual Schema, MO - Moving Object, NMO - Non-Moving Object, S -Schemas)

In Figure 4 we show in more detail a typical prey acquisition behavior for the frog.
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Figure 4. Frog's prey acquisition behavior involving a worm as shown on the left-hand side. The right-hand
side describes the frog's response in relation to the stimulus [16].

The particular behavior we will describe in more detail is the frog's prey acquisition with detour as introduced
previously in Figure 2. The setup involves a frog and a barrier in front of a prey, where fencepost gaps have the
same width, with the following experiments carried out [13] and shown in Figure 5.

Figure 5. A.  Approach to prey with single 10cm barrier with immediate detour.  B.  Approach to prey with
single 20 cm barrier: first trial with frog in front of 20cm barrier (numbers indicate the succession of the
movements). The toad directly approaches de center of the barrier requiring successive trials to manage the
detour around it.  C.  Approach to prey with single 20cm barrier. After 3 trials the frog detours directly
around the 20cm barrier.  Arrowheads indicate the position and orientation of the frog following a single
continuous movement after which the frog pauses.



• Experiment I: Barrier 10cm Wide. Frogs that started from a long enough distance (15-25cm) in front of a 10cm
wide barrier (and with the worm 10cm behind the barrier) showed (in 95% of the trials) reliable detour
behaviors from the first interaction with the 10cm barrier. They produced an immediate approach movement
towards one of the edges of the barrier.

• Experiment II: Barrier 20 cm wide. The "naïve" frog (a frog that has not been yet exposed to the barrier) tends
to go for a fencepost gap in the direction of the prey (this was the case for 88% of the trials).  The frog starts out
approaching the fence trying to make its way through the gaps. During the first trials the frog goes straight
towards the prey thus bumping into the barrier. Since the frog is not able to go through a gap it backs-up about
2cm and then reorients towards one of the neighboring gaps. After 2 (43%) or 3 (57%) trials, the "trained" frog
is already detouring around the barrier without bumping into the barrier. The behavior involves a synergy of
both forward and lateral body (sidestep) movements in a very smooth and continuous single movement.

In order to model such behaviors we introduce the schema computational model. Schemas define a hierarchical
distributed model for action-perception control, where each schema incorporates its own structure and control
mechanisms. At the higher abstraction levels, the detailed schema implementation is left unspecified, only
specifying what is to be achieved. At a lower level, schemas are implemented with neural networks or other
processes. The schema computational model follows a tree-like structure as shown in Figure 6 (schemas may also be
shared making the structure a directed graph). At the top, a high level schema is decomposed into two lower level
schemas where the three schemas together are known as schema aggregates, or assemblages. When at the same
level, schemas are interconnected (solid arrows), or when at different levels, schemas are relabeled having their task
delegated (dashed arrows).
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Figure 6. The ASL/NSL computational model is based on hierarchical interconnected schemas. A schema
at a higher level (level 1) is decomposed (dashed lines) into additional interconnected (solid arrow)
subschemas (level 2). At the lowest level schemas are implemented by neural networks or other processes.

The schema interface consists of multiple unidirectional control/data, input and output ports having a body where
schema behavior is specified, as shown in Figure 7. Communication is in the form of asynchronous message
passing, hierarchically managed, internally, through anonymous port reading and writing, and externally, through
dynamic port connections and relabelings.
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Figure 7. Each schema may contain multiple input, din1,...,dinn, and output, dout1,...,doutm, ports for
unidirectional communication.

When doing connections, output ports from one schema are connected to input ports from other schemas, and when
doing relabelings, ports of similar type (input or output) belonging to schemas at different levels in the hierarchy are



linked to each other. The hierarchical port management methodology enables the development of distributed
architectures where schemas may be designed in a top-down and bottom-up fashion implemented independently and
without prior knowledge of the complete model or their final execution environment, encouraging component
reusability.

Figure 8 shows the schema model hierarchy corresponding to the toad's prey acquisitions with detour model [14].
We show a single schema level (level 1) describing the different behaviors being modeled, primarily prey approach
and static object avoid. Additional schemas include visual and tactile input, moving stimulus selector (when more
than one prey exists), prey and static object recognizers together with the four types of motor actions: forward,
orient, sidestep and backward. Tasks at this level are delegated to the next level down, the neural level, where
schemas perform more refined tasks. In this model, both the prey approach and the static object avoid schemas are
implemented by neural schemas: a Retina [21], Maximum Selector [15], Tectum and PreTectum-Thalamus [8],
together with neural motor heading maps.
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Figure 8. Schema model hierarchy for the toad's prey acquisition and static object avoidance model
previously described.

Complexity is much more significant when considering more behaviors and other brain regions [4].

2.3 Neural Networks
Biologically inspired neural networks are based on physiological and anatomical neural mappings. For example,
Figure 9 shows a diagram of different neural areas involved in the frog's prey acquisition and detour model.

Figure 9. The two illustrations show the most important areas in the frog's prey acquisition model. These
are the Optic Tectum (O) (divided in four regions: Temporal (T), Dorsal (D), Nasal (N) and Ventral (V)),
the Thalamic Pretectal Neuropil (P), together with other regions: Nucleus of Belonci (B), Lateral
Geniculate Nucleus (C) and Basal Optic Root (X) [20].

Neural schemas provide their implementation in terms of neural networks processing, as shown in Figure 10.
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Figure 10. Neural schema hierarchy showing task delegation to neural networks processing.

At this level, neural networks are simple processing units interconnected among each other to provide large-scale
computation. Each neuron is defined by its membrane potential value m depending on its previous history and
current input sm while its output value M is defined by a non-linear threshold function over its membrane potential,
as shown in Figure 11. For example, the leaky integrator model [2] is used to simulate such neurons.

Figure 11. Simple neural element as basic component at the neural network level.

For example, at this level of granularity the MaxSelector [15] neural schema is implemented by the neural network
shown in Figure 12.
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Figure 12. The neural network shown corresponds to the architecture of the Maximum Selector model,
where ui and v represent neural membrane potentials, Ui and V represent neural firing rates, Si represent
inputs to the network, and wi represent connection weights. The network is initialized with a number of
positive inputs assigned to different cells. After many iterations the network stabilizes producing a single
"winner", i.e. a single active cell.

The neural schema model also provides an extended model where neurons themselves may have their task delegated
by neural implementations of different levels of detail, from the very simple neuron models to very detailed ones
[23].

2.4 Neurons
Neuron models vary in their detail, depending on the particular simulated mechanisms, involving at the top level of
a soma (nucleus of the neuron), an axon (output of the neuron), and dendrites (input to the neuron). Connections
between neurons take place in the synapses at the axon terminals of one neuron connected to the dendrites of another
neuron. Synapses are the main mechanism for plasticity in neurons and can be further refined into much more detail,
as shown in Figure 13.
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Figure 13. Neural modeling at different levels of details.

3 Simulation Results
Due to space limitations in this paper we only show the resulting path motion seen at the top level for the previous
basic experiments, as shown in Figure 14. Additional graphs (not shown here) display neural network states for the
different neural schemas.

Figure 14. The above diagrams display the Rana Computatrix basic experiments for the prey acquisition
and detour model. The different dots correspond to the frog's trajectory from its initial location as it finally
reaches the prey. The left-hand side shows the resulting motion path for the 10cm barrier. Note how the
frog heads directly towards the side of the barrier. The middle diagram displays the resulting motion path
for the 20cm barrier experiment before learning. We have added numbers corresponding to the frog's
position in time. In this particular experiment the frog hits the barrier three times before perceiving the side
of the barrier and moving towards the prey. The right-hand side diagram shows the resulting motion path
for the 20cm wide barrier after learning.

4 Discussion
The work presented here overviews the inherent complexity in modeling biological systems. This complexity can be
managed by taking a multi-level approach emphasizing both top-town and bottom-up designs through different
granularity levels. At the top level agents are defined in terms of sensors and actuators and may involve interaction
with other agents, such as in competition and cooperation. Next level down, each agent is described in terms of its
behaviors such as in the frog's prey acquisitions with detour model. Once basic behaviors are defined additional ones
may be added taking advantage of the underlying schema architecture. Next level down, behaviors are implemented
by different (or common) neural schemas representing neural network processing. The detailed neuron bottom level
is required only when simple neural models do not provide sufficient processing capabilities such as those requiring
synaptic plasticity or presynaptic inhibition. Current work involves experimentation with these and other models and
applying them to robots to provide the feedback in experimentation as described in Figure 1.
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