
A. Weitzenfeld: NSL Neural Simulation Language 1

NSL
Neural Simulation Language

Alfredo Weitzenfeld
Departamento Académico de Computación
Instituto Tecnológico Autónomo de México

Río Hondo #1, Tizapán San Angel 01000
México D.F., México

Correspondence:

Alfredo Weitzenfeld
Departamento Académico de Computación
Instituto Tecnológico Autónomo de México
Rio Hondo #1, Tizapán San Angel 01000
México D.F., México
Phone: +52-55-56284060
Fax: +52-55-56162211
email: alfredo@itam.mx

A. Weitzenfeld: NSL Neural Simulation Language 2

INTRODUCTION

Neural simulation plays an essential role in understanding the brain. While many neural
simulators exist today (see NEUROSIMULATORS for a listing of the most important ones),
design considerations can be quite different. For example, systems supporting very detailed
neural elements can simulate only a few neurons at a time (see NEURON and GENESIS), while
systems supporting coarser elements can usually simulate larger neural populations. In this article
we describe the Neural Simulation Language (NSL) (Weitzenfeld et al., 2002), an object-
oriented system (Wegner, 1990) primarily designed to support simulation of large neural
networks. The system addresses the needs of a wide range of users, from novice users requiring
friendly user interfaces to advanced users requiring advanced programming and integration to
other systems. Two versions of the system exist today, one in Java (Gosling et al., 2000) and the
other one in C++ (Stroustrup, 2000). Both of these can run in a wide range of computer platforms
making the system quite independent from the actual computing environment.

MODULARITY IN NEURAL SYSTEMS

A particular aspect that distinguishes NSL from comparable simulators is its special focus on
modularity, a well-known software development strategy in dealing with large and complex
systems. As neural models become large and complex, they become hard to manage. Moreover,
modularization of biological neural networks is further motivated by taking into consideration
the way we analyze the brain as a set of different brain regions, as seen by the example shown in
Figure 1.

The general methodology for understanding a complex neural system involves two basic
approaches. One is to focus on some particular brain region or module and carry out studies of
that region in detail. The other is to step back and look at higher levels of organization in which
the details of particular modules are hidden. Full understanding comes as we cycle back and forth
between different levels of detail in analyzing different subsystems, sometimes simulating
modules in isolation, at other times designing computer experiments that help us follow the
dynamics of the interactions between the various modules.

MODELING IN NSL

There are two ways to describe a model in NSL: (i) by direct programming in NSLM, the
NSL (compiled) Modeling language; and (ii) by using the Schematic Capture System (SCS), a
visual programming interface to NSLM supporting the description of module assemblages. In
general, NSL supports the two levels of modeling, modules and neural networks, as described
next.

A. Weitzenfeld: NSL Neural Simulation Language 3

Modules

Modules in NSL are hierarchical structures organized in a tree fashion having root module,
the model and multiple levels of module assemblages. Modules may be implemented in different
ways and independently from each other in a top-down and bottom-up fashion, an important
benefit from modular design. In particular, neural modules are implemented with neural
networks, corresponding to leaves in the tree. In general, the external interface to a module is
described by a set of unidirectional input and output data ports, representing module entry or exit
points, where data is sent or received, usually in the form of numerical values with varying
dimension, i.e., a single scalar, a one-dimensional array of values (vector), a two-dimensional
array (matrix), or higher ones. In order to communicate, modules require interconnections among
ports belonging to different modules. The following is sample NSLM code describing module
assemblages:

nslModel Model()
{

private StimulusModule stimulus();
private MainModule main();
private OutputModule output();

public void makeConn(){
nslConnect(stimulus.sout,main.in);
nslConnect(stimulus.sout,output.sin);
nslConnect(main.out,output.oin);

}
}

The description is analogous to a class specification in object-oriented programming. The
attribute section describes a three-module assemblage consisting of a “stimulus”, “main” and
“output” modules, while the makeConn method specifies module interconnections using the
nslConnect statement (see Weitzenfeld et al., 2002 for a more extensive description of all NSLM
commands.) This sample NSLM code could be automatically generated from SCS as well. Figure
2 shows sample schematics for a module assemblage within a higher-level module.

Neural Networks

Modules representing brain regions can be anatomically or physiologically divided until
reaching neural modules, modules described by neural arrays. In order to model a complete
neural network it is necessary to describe (1) the particular neuron model, i.e., the desired neural
level of detail, (2) the neurons making up the network, (3) the set of interconnections among
neurons, and (3) network parameters, such as inputs and connection weights. Without precluding
the importance of other neural models, we focus here on the leaky integrator (Arbib, 1989)
neuron model, a single-compartment neuron, having one output and many inputs. The internal
state of the neuron is described by a single scalar quantity, its membrane potential mp that
depends on the neuron's inputs and past history. The output is described by another single scalar

A. Weitzenfeld: NSL Neural Simulation Language 4

quantity, its firing rate mf, and may serve as input to multiple neurons, including itself. As the
input to a neuron varies the membrane potential and firing rate vary as well.

In NSL two numerical structures (NslDouble0 data type) are required to represent such a
neuron, one corresponds to the membrane potential and the other one to its firing rate:

private NslDouble0 mf();
private NslDouble0 mp();

In many cases we may want the value of mf to be communicated to other modules. If such is
the case, the declaration for mf should be modified from a private variable to a public output port
(note the Dout keyword):

public NslDoutDouble0 mf();

The membrane potential for mp is described by a first-order differential equation with
dependence on its previous history and input sm

),,()(tmpsf
dt

tdmp
mm =τ

Variable τm represents the time constant, while the choice of f defines the particular neural
model utilized. The leaky integrator model is described by f(sm,mp,t) = -mp(t) + sm(t), or

)()()(tstmp
dt

tdmp
mm +−=τ

In addition to the membrane potential and firing rate descriptions, we also need to specify the

input to the neuron, sm, internal to the module or obtained from another module. In the latter case
input sm would be specified as an input port (note the “Din” keyword):

public NslDinDouble0 sm();

where sm holds a weighted spatial summation of all input to the corresponding neuron.

While neural networks are continuous in their nature, their simulated state is approximated by
discrete time computations. For this reason we must specify an integration or approximation
method to generate as faithfully as possible the corresponding neural state. The dynamics for mp
are described by the following statement,:

mp = nslDiff(mp,tau,-mp+sm);

Fucntion nslDiff defines a first-degree differential equation equal to "-mp+sm" as described
by the leaky integrator model. Different methods can be used to approximate the differential
equation, such as Euler and Runge-Kutta. The choice of method may affect both the computation
time and its precision. The specific method to use is chosen during simulation and not as part of
the model architecture.

The firing rate mf, the output of the neuron, is obtained by applying a threshold, typically a
ramp, step, saturation or sigmoidal function, to the neuron's membrane potential,

A. Weitzenfeld: NSL Neural Simulation Language 5

))(()(tmptmf σ=

where σσσσ is usually a non-linear function.

For example, if σσσσ is set to a step threshold function, the equation for the firing rate mf would
be described by

mf = nslStep(mp);

where nslStep is the corresponding NSL step threshold function.

The previous definition specifies a single neuron without any interconnections. An actual
neural network is made of a number of interconnected neurons where the output of one neuron
serves as input to the others. In the leaky integrator neural model, interconnections are very
simple structures. On the other hand, synapses, the links among neurons, are – in biological
systems – complex electrochemical systems and may be modeled in exquisite detail. However,
many models have succeeded with a very simple synaptic model where each synapse carries a
connection weight that describes how neurons affect each other. The most common formula for
the input sv to a neuron v is given by

∑
−

=

=
1

0

n

i
ijij ufwsv

where ufi is the firing of neuron ui whose output is connected to the jth input line of neuron vj,
and wji is the weight for that link, as shown in Figure 3 (up and vp are analogous to mp, while uf

and vf are analogous to mf).

Expanding the summation, input to neuron vj (identified by its corresponding membrane
potential vpj) is given by svj defined as

 svj = wj0uf0 + wj1uf1 + wj2uf2 + ... + wjn-1ufn-1

While module interconnections are specified in NSL via a nslConnect method call, doing this
with neurons would in general be prohibitively expensive considering there may be thousands or
millions of neurons and even more connections in a single neural network. Instead we use
mathematical expressions similar to those used for their representation. For example, the input to
neuron vj, represented by svj, would be the sum for all outputs of neuron ufi multiplied (using the
‘*’ operator) by connection weight wji, correspondingly, as shown next:

svj = wj0*uf0 + wj1*uf1 + wj2*uf2 + ...;

Note that there exist m such equations in the network. We could describe each membrane
potential and firing rate individually or else we could make all ui and vj neuron vector structures.
The first approach would be very long, inefficient, and prone to typing errors; thus we present the
second approach, using neuron arrays and connection masks representing spatial arrangements
among homogeneous neurons and their connections, respectively. We consider ufi the output

A. Weitzenfeld: NSL Neural Simulation Language 6

from a single neuron in an array of neurons and svj the input to a single neuron in another array of
neurons.

If mask wjk (for -d≤k≤d) represents the synaptic weights from the ufj+k (for -d≤k≤d) elements
to vj, for every j, we then have

∑
−=

+=
d

dk
kjjkj ufwsv

where the same mask w is applied to the output of each neuron ufi+k to obtain input svj. In NSL,
the convolution operation is described by a single symbol '@'.

sv= w@uf;

This kind of representation results in great conciseness, an important concern when working
with large numbers of interconnected neurons. Note that this is possible as long as connections
are regular. Otherwise, single neurons would still need to be connected separately on a one by
one basis. This also suggests that the operation is best defined when the number of v and u
neurons matches, although a non-matching number of units can be processed using a more
complex notation.

SIMULATION IN NSL

Simulation involves interactively specifying aspects of the model that tend to change, in
particular parameter values, input patterns, simulation control and visualization. It is not only
important to design a good model, it is also important to design good graphical interfaces, both
input and output. In terms of input, NSL offers a number of approaches: (i) by interactively
writing code in NSLS, the NSL (interpreted) Scripting language; (ii) by loading NSLS scripts
stored in files; and (iii) by designing custom input interfaces. In terms of output, NSL enables the
user to specify various forms of graphical and textual output, including temporal and spatial 2D
and 3D graphics (see Weitzenfeld et al., 2002 for input and output visualization examples as well
as more extensive description of NSLS commands.)

DISCUSSION

In this article we have overviewed modeling and simulation using NSL, a system primarily
designed to simulate modular neural systems, both biological and artificial (see
BACKPROPAGATION for an example of artificial neural networks). The underlying NSL
computational model is based on the Abstract Schema Language (ASL) (Weitzenfeld, 1993)
inspired by the work on SCHEMA THEORY (q.v.), actors (Agha, 1986) and more generally on
object-based concurrent programming (Yonezawa and Tokoro, 1987).

There are a number of issues worth discussing from our experience with NSL. While user
interactivity plays an essential role while creating and testing new neural models, as model

A. Weitzenfeld: NSL Neural Simulation Language 7

becomes more stable, simulation efficiency becomes a primary concern. This is a very important
issue if we consider that neural network execution can consume extensive amounts of processing
time, possibly hours or even days depending on the size and architecture of the network. For
example, we have processed in NSL “simple” biological network, such as the RETINA (q.v.)
model involving ten thousand neurons, consuming just a few seconds. On the other hand, a more
complex network such as the one described in Figure 1 could take several minutes if
implemented by “faithful” neural components. The general solution to this problem is to use
parallelism and distributed computing facilities in speeding up computation. While a number of
neural systems have been ported to supercomputers, we are currently developing a distributed
simulation environment to run on networks of low cost computers (Weitzenfeld et al., 2000). In
general, the client-server distributed architecture has become quite pervasive thanks to the
Internet.

A Web-based simulation interface (Alexander et al., 1999) brings additional possibilities to
the process of neural modeling. For example, users could be offered shared model repositories in
creating new models or in addressing experimental data linked to it. These two thrusts are part of
a project known as Brain Models on the Web (BMW), a model repository where model
assumptions, empirical data, and simulation results are stored (see DATABASES FOR
NEUROSCIENCE).

An important issue arising from the sharing of module libraries is how to reuse portions of
different models in creating new ones. An important consideration is to provide a general module
interconnection specification to be followed by all modelers. This specification should deal with
issues such as “edges” in the block diagrams as the one shown in Figure 1, where module
interconnections and the corresponding ports, are designed to deal only with primitive data
without any temporal considerations. Additionally, the specification could address the
relationship to the particular experimental protocol on which the model is based. These aspects
need to be defined and then specified as a “meta-level” that will separate the internal module
characteristics from the external ones.

Another consideration is the extensibility the system. Since not all users use similar
simulation systems, thus it is important to offer interoperability of data and model descriptions to
be shared by multiple simulation systems and applications in general. Additionally, integration
with simulated or real-time REACTIVE ROBOTIC SYSTEMS (q.v.) is of particular interest, in
particular BIOLOGICALLY INSPIRED ROBOTICS (q.v.) as exemplified by a number of NSL-
based neural architectures developed to control mobile robots (Fagg et al., 1992; Weitzenfeld,
2000). Since many approaches exist today to mobile robotics, it is an interesting challenge to
design new architectures integrating non-neural and neural based approaches (Arkin et al. 2000).

A. Weitzenfeld: NSL Neural Simulation Language 8

REFERENCES

Agha, G., 1986, Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press.

Alexander, A., Arbib, M.A., Weitzenfeld, A., 1999, Web Simulation of Brain Models, in Proc. of
SCS 1999 International Conference on Web-Based Modelling and Simulation, January 17-
20, San Francisco, California.

*Arbib, M.A., 1989, The Metaphorical Brain 2: Neural Networks and Beyond, Wiley.

Arkin, R.C., Ali, K., Weitzenfeld, A., and Cervates-Perez, F., 2000, Behavioral Models of the
Praying Mantis as a Basis for Robotic Behavior, in Journal of Robotics and Autonomous
Systems, 32 (1) pp. 39-60, Elsevier.

Crowley, M., Oztop, E., Mármol, S., 2002, Crowley-Arbib Saccade Model, in The Neural
Simulation Language: A System for Brain Modeling, (A. Weitzenfeld, M. Arbib and A.
Alexander), MIT Press.

Fagg, A.H., King, I.K., Lewis, M.A., Liaw, J.S., Weitzenfeld, A., 1992, A Neural Network Based
Testbed for Modeling Sensorimotor Integration in Robotics Applications, in Proc. of IJCNN
'92, Baltimore, MD.

Gosling, J., Joy, B., Steele, G, and Bracha., 2000, G., The Java Language Specification, 2nd
Edition, Addison-Wesley.

Stroustrup, B., 200, The C++ Programming Language, Special Edition, Addison-Wesley.

*Wegner, P., 1990, Concepts and Paradigms of Object-Oriented Programming, in SIGPLAN
OOPS Messenger, 1(1):7-87, Aug.

Weitzenfeld, A., 1993, ASL: Hierarchy, Composition, Heterogeneity, and Multi-Granularity in
Concurrent Object-Oriented Programming, in Proc. on Neural Architectures and Distributed
AI: From Schema Assemblages to Neural Networks Workshop, Oct 19-20, Center for Neural
Engineering, USC, Los Angeles, CA.

Weitzenfeld A., 2000, A Multi-level Approach to Biologically Inspired Robotic Systems, in Proc
of NNW 2000 10th International Conference on Artificial Neural Networks and Intelligent
Systems, Prague, Czech Republic, July 9-12.

*Weitzenfeld, A., Arbib, M.A., and Alexander, A., 2002, The Neural Simulation Language NSL,
A System for Brain Modeling, MIT Press (http://www.neuralsimulationlanguage.org).

Weitzenfeld, A., Peguero, O., and Gutiérrez, S., 2000, NSL/ASL: Distributed Simulation of
Modular Neural Networks, in Proc of MICAI 2000: Advances on Artificial Intelligence,
Acapulco, Mexico, April 10-14, LNCS 1796.

A. Weitzenfeld: NSL Neural Simulation Language 9

Yonezawa, A. and Tokoro, M., Eds., 1987, Object-Oriented Concurrent Programming, MIT
Press.

A. Weitzenfeld: NSL Neural Simulation Language 10

Figure Captions

Figure 1. The smaller outlined diagram shows a basic model for control of eye movements
consisting of a Superior Colliculus (SC) and Brainstem modules, each representing a single
brain region, responsible for generation of SACCADES (q.v.). As an example of the benefits
of modularization, the SC and BrainStem modules can be embedded into the much larger and
far more complex model of interacting brain regions, such as the Crowley-Arbib model of
BASAL GANGLIA (q.v.) (Crowley et al., 2002).

Figure 2. The window shows the Schematic Capture System (SCS) view of the schematics of a
sample module consisting of a two-module assemblage and two data ports. Modules are
represented by rectangles, while entry (left) and exit (right) ports are represented by pentagon
shaped icons.

Figure 3. The diagram shows a sample two-layer fully connected neural organization (see
BACKPROPAGATION for an example of networks using such architectures). Each neuron
is described by a single compartment represented by a value up or vp, its membrane potential
respectively, and a value uf or vf, to its firing, the output from the neuron respectively. Input
to the first neural layer is represented by s. Additionally, weights w have been added to the
different connections.

A. Weitzenfeld: NSL Neural Simulation Language 11

BrainStem

Lateral Basal
Ganglia

Medial Basal
Ganglia

Substantia
Nigra Compacta

PreFrontal
Cortex

Frontal Eye
Field

Thalamus

Lateral Inter
Parietal

Superior
Colliculus

