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INTRODUCTION 

Neural simulation plays an essential role in understanding the brain. While many neural 
simulators exist today (see NEUROSIMULATORS for a listing of the most important ones), 
design considerations can be quite different. For example, systems supporting very detailed 
neural elements can simulate only a few neurons at a time (see NEURON and GENESIS), while 
systems supporting coarser elements can usually simulate larger neural populations. In this article 
we describe the Neural Simulation Language (NSL) (Weitzenfeld et al., 2002), an object-
oriented system (Wegner, 1990) primarily designed to support simulation of large neural 
networks. The system addresses the needs of a wide range of users, from novice users requiring 
friendly user interfaces to advanced users requiring advanced programming and integration to 
other systems. Two versions of the system exist today, one in Java (Gosling et al., 2000) and the 
other one in C++ (Stroustrup, 2000). Both of these can run in a wide range of computer platforms 
making the system quite independent from the actual computing environment. 

MODULARITY IN NEURAL SYSTEMS 

A particular aspect that distinguishes NSL from comparable simulators is its special focus on 
modularity, a well-known software development strategy in dealing with large and complex 
systems. As neural models become large and complex, they become hard to manage. Moreover, 
modularization of biological neural networks is further motivated by taking into consideration 
the way we analyze the brain as a set of different brain regions, as seen by the example shown in 
Figure 1. 

The general methodology for understanding a complex neural system involves two basic 
approaches. One is to focus on some particular brain region or module and carry out studies of 
that region in detail. The other is to step back and look at higher levels of organization in which 
the details of particular modules are hidden. Full understanding comes as we cycle back and forth 
between different levels of detail in analyzing different subsystems, sometimes simulating 
modules in isolation, at other times designing computer experiments that help us follow the 
dynamics of the interactions between the various modules.  

MODELING IN NSL 

There are two ways to describe a model in NSL: (i) by direct programming in NSLM, the 
NSL (compiled) Modeling language; and (ii) by using the Schematic Capture System (SCS), a 
visual programming interface to NSLM supporting the description of module assemblages. In 
general, NSL supports the two levels of modeling, modules and neural networks, as described 
next.  
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Modules  

Modules in NSL are hierarchical structures organized in a tree fashion having root module, 
the model and multiple levels of module assemblages. Modules may be implemented in different 
ways and independently from each other in a top-down and bottom-up fashion, an important 
benefit from modular design. In particular, neural modules are implemented with neural 
networks, corresponding to leaves in the tree. In general, the external interface to a module is 
described by a set of unidirectional input and output data ports, representing module entry or exit 
points, where data is sent or received, usually in the form of numerical values with varying 
dimension, i.e., a single scalar, a one-dimensional array of values (vector), a two-dimensional 
array (matrix), or higher ones. In order to communicate, modules require interconnections among 
ports belonging to different modules. The following is sample NSLM code describing module 
assemblages: 

nslModel Model()
{

private StimulusModule stimulus();
private MainModule main();
private OutputModule output();

public void makeConn(){
nslConnect(stimulus.sout,main.in);
nslConnect(stimulus.sout,output.sin);
nslConnect(main.out,output.oin);

}
}

The description is analogous to a class specification in object-oriented programming. The 
attribute section describes a three-module assemblage consisting of a “stimulus”, “main” and 
“output” modules, while the makeConn method specifies module interconnections using the 
nslConnect statement (see Weitzenfeld et al., 2002 for a more extensive description of all NSLM 
commands.) This sample NSLM code could be automatically generated from SCS as well. Figure 
2 shows sample schematics for a module assemblage within a higher-level module. 

Neural Networks 

Modules representing brain regions can be anatomically or physiologically divided until 
reaching neural modules, modules described by neural arrays. In order to model a complete 
neural network it is necessary to describe (1) the particular neuron model, i.e., the desired neural 
level of detail, (2) the neurons making up the network, (3) the set of interconnections among 
neurons, and (3) network parameters, such as inputs and connection weights. Without precluding 
the importance of other neural models, we focus here on the leaky integrator (Arbib, 1989) 
neuron model, a single-compartment neuron, having one output and many inputs. The internal 
state of the neuron is described by a single scalar quantity, its membrane potential mp that 
depends on the neuron's inputs and past history. The output is described by another single scalar 



A. Weitzenfeld: NSL Neural Simulation Language  4 

quantity, its firing rate mf, and may serve as input to multiple neurons, including itself. As the 
input to a neuron varies the membrane potential and firing rate vary as well. 

In NSL two numerical structures (NslDouble0 data type) are required to represent such a 
neuron, one corresponds to the membrane potential and the other one to its firing rate: 

private NslDouble0 mf();
private NslDouble0 mp();

In many cases we may want the value of mf to be communicated to other modules. If such is 
the case, the declaration for mf should be modified from a private variable to a public output port 
(note the Dout keyword): 

public NslDoutDouble0 mf();

The membrane potential for mp is described by a first-order differential equation with 
dependence on its previous history and input sm 

),,()( tmpsf
dt

tdmp
mm =τ  

Variable τm represents the time constant, while the choice of f defines the particular neural 
model utilized. The leaky integrator model is described by f(sm,mp,t) = -mp(t) + sm(t), or 

)()()( tstmp
dt

tdmp
mm +−=τ

 
In addition to the membrane potential and firing rate descriptions, we also need to specify the 

input to the neuron, sm, internal to the module or obtained from another module. In the latter case 
input sm would be specified as an input port (note the “Din” keyword): 

public NslDinDouble0 sm();

where sm holds a weighted spatial summation of all input to the corresponding neuron.  

While neural networks are continuous in their nature, their simulated state is approximated by 
discrete time computations. For this reason we must specify an integration or approximation 
method to generate as faithfully as possible the corresponding neural state. The dynamics for mp 
are described by the following statement,: 

mp = nslDiff(mp,tau,-mp+sm);

Fucntion nslDiff defines a first-degree differential equation equal to "-mp+sm" as described 
by the leaky integrator model. Different methods can be used to approximate the differential 
equation, such as Euler and Runge-Kutta. The choice of method may affect both the computation 
time and its precision. The specific method to use is chosen during simulation and not as part of 
the model architecture. 

The firing rate mf, the output of the neuron, is obtained by applying a threshold, typically a 
ramp, step, saturation or sigmoidal function, to the neuron's membrane potential, 
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where σσσσ    is usually a non-linear function. 

For example, if σσσσ is set to a step threshold function, the equation for the firing rate mf would 
be described by 

mf = nslStep(mp);

where nslStep is the corresponding NSL step threshold function. 

The previous definition specifies a single neuron without any interconnections. An actual 
neural network is made of a number of interconnected neurons where the output of one neuron 
serves as input to the others. In the leaky integrator neural model, interconnections are very 
simple structures. On the other hand, synapses, the links among neurons, are – in biological 
systems – complex electrochemical systems and may be modeled in exquisite detail. However, 
many models have succeeded with a very simple synaptic model where each synapse carries a 
connection weight that describes how neurons affect each other. The most common formula for 
the input sv to a neuron v is given by 

∑
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where ufi is the firing of neuron ui whose output is connected to the jth input line of neuron vj, 
and wji is the weight for that link, as shown in Figure 3 (up and vp are analogous to mp, while uf 

and vf are analogous to mf).  

Expanding the summation, input to neuron vj (identified by its corresponding membrane 
potential vpj) is given by svj defined as 

 svj = wj0uf0 + wj1uf1 + wj2uf2 + ... + wjn-1ufn-1 

While module interconnections are specified in NSL via a nslConnect method call, doing this 
with neurons would in general be prohibitively expensive considering there may be thousands or 
millions of neurons and even more connections in a single neural network. Instead we use 
mathematical expressions similar to those used for their representation. For example, the input to 
neuron vj, represented by svj, would be the sum for all outputs of neuron ufi multiplied (using the 
‘*’ operator) by connection weight wji, correspondingly, as shown next: 

svj = wj0*uf0 + wj1*uf1 + wj2*uf2 + ...;

Note that there exist m such equations in the network. We could describe each membrane 
potential and firing rate individually or else we could make all ui and vj neuron vector structures. 
The first approach would be very long, inefficient, and prone to typing errors; thus we present the 
second approach, using neuron arrays and connection masks representing spatial arrangements 
among homogeneous neurons and their connections, respectively. We consider ufi the output 
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from a single neuron in an array of neurons and svj the input to a single neuron in another array of 
neurons. 

If mask wjk (for -d≤k≤d) represents the synaptic weights from the ufj+k (for -d≤k≤d) elements 
to vj, for every j, we then have 

∑
−=

+=
d

dk
kjjkj ufwsv  

where the same mask w is applied to the output of each neuron ufi+k to obtain input svj. In NSL, 
the convolution operation is described by a single symbol '@'. 

sv= w@uf;

This kind of representation results in great conciseness, an important concern when working 
with large numbers of interconnected neurons. Note that this is possible as long as connections 
are regular. Otherwise, single neurons would still need to be connected separately on a one by 
one basis. This also suggests that the operation is best defined when the number of v and u 
neurons matches, although a non-matching number of units can be processed using a more 
complex notation. 

SIMULATION IN NSL 

Simulation involves interactively specifying aspects of the model that tend to change, in 
particular parameter values, input patterns, simulation control and visualization. It is not only 
important to design a good model, it is also important to design good graphical interfaces, both 
input and output. In terms of input, NSL offers a number of approaches: (i) by interactively 
writing code in NSLS, the NSL (interpreted) Scripting language; (ii) by loading NSLS scripts 
stored in files; and (iii) by designing custom input interfaces. In terms of output, NSL enables the 
user to specify various forms of graphical and textual output, including temporal and spatial 2D 
and 3D graphics (see Weitzenfeld et al., 2002 for input and output visualization examples as well 
as more extensive description of NSLS commands.) 

DISCUSSION 

In this article we have overviewed modeling and simulation using NSL, a system primarily 
designed to simulate modular neural systems, both biological and artificial (see 
BACKPROPAGATION for an example of artificial neural networks). The underlying NSL 
computational model is based on the Abstract Schema Language (ASL) (Weitzenfeld, 1993) 
inspired by the work on SCHEMA THEORY (q.v.), actors (Agha, 1986) and more generally on 
object-based concurrent programming (Yonezawa and Tokoro, 1987).  

There are a number of issues worth discussing from our experience with NSL. While user 
interactivity plays an essential role while creating and testing new neural models, as model 
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becomes more stable, simulation efficiency becomes a primary concern. This is a very important 
issue if we consider that neural network execution can consume extensive amounts of processing 
time, possibly hours or even days depending on the size and architecture of the network. For 
example, we have processed in NSL “simple” biological network, such as the RETINA (q.v.) 
model involving ten thousand neurons, consuming just a few seconds. On the other hand, a more 
complex network such as the one described in Figure 1 could take several minutes if 
implemented by “faithful” neural components. The general solution to this problem is to use 
parallelism and distributed computing facilities in speeding up computation. While a number of 
neural systems have been ported to supercomputers, we are currently developing a distributed 
simulation environment to run on networks of low cost computers (Weitzenfeld et al., 2000). In 
general, the client-server distributed architecture has become quite pervasive thanks to the 
Internet.  

A Web-based simulation interface (Alexander et al., 1999) brings additional possibilities to 
the process of neural modeling. For example, users could be offered shared model repositories in 
creating new models or in addressing experimental data linked to it. These two thrusts are part of 
a project known as Brain Models on the Web (BMW), a model repository where model 
assumptions, empirical data, and simulation results are stored (see DATABASES FOR 
NEUROSCIENCE).   

An important issue arising from the sharing of module libraries is how to reuse portions of 
different models in creating new ones. An important consideration is to provide a general module 
interconnection specification to be followed by all modelers. This specification should deal with 
issues such as “edges” in the block diagrams as the one shown in Figure 1, where module 
interconnections and the corresponding ports, are designed to deal only with primitive data 
without any temporal considerations. Additionally, the specification could address the 
relationship to the particular experimental protocol on which the model is based. These aspects 
need to be defined and then specified as a “meta-level” that will separate the internal module 
characteristics from the external ones.  

Another consideration is the extensibility the system. Since not all users use similar 
simulation systems, thus it is important to offer interoperability of data and model descriptions to 
be shared by multiple simulation systems and applications in general. Additionally, integration 
with simulated or real-time REACTIVE ROBOTIC SYSTEMS (q.v.) is of particular interest, in 
particular BIOLOGICALLY INSPIRED ROBOTICS (q.v.) as exemplified by a number of NSL-
based neural architectures developed to control mobile robots (Fagg et al., 1992; Weitzenfeld, 
2000). Since many approaches exist today to mobile robotics, it is an interesting challenge to 
design new architectures integrating non-neural and neural based approaches (Arkin et al. 2000). 
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Figure Captions 

Figure 1. The smaller outlined diagram shows a basic model for control of eye movements 
consisting of a Superior Colliculus (SC) and Brainstem modules, each representing a single 
brain region, responsible for generation of SACCADES (q.v.). As an example of the benefits 
of modularization, the SC and BrainStem modules can be embedded into the much larger and 
far more complex model of interacting brain regions, such as the Crowley-Arbib model of 
BASAL GANGLIA (q.v.) (Crowley et al., 2002). 

Figure 2. The window shows the Schematic Capture System (SCS) view of the schematics of a 
sample module consisting of a two-module assemblage and two data ports. Modules are 
represented by rectangles, while entry (left) and exit (right) ports are represented by pentagon 
shaped icons. 

Figure 3. The diagram shows a sample two-layer fully connected neural organization (see 
BACKPROPAGATION for an example of networks using such architectures). Each neuron 
is described by a single compartment represented by a value up or vp, its membrane potential 
respectively, and a value uf or vf, to its firing, the output from the neuron respectively. Input 
to the first neural layer is represented by s. Additionally, weights w have been added to the 
different connections. 
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