
ASL/NSL: A MULTI-LEVEL COMPUTATIONAL MODEL FOR
DISTRIBUTED NEURAL SIMULATION*

Alfredo Weitzenfeld
Departmento Académico de Computación

Instituto Tecnológico Autónomo de México
Río Hondo #1, San Angel Tizapán, CP 01000

México DF, MEXICO
alfredo@lamport.rhon.itam.mx

Sebastián Gutiérrez
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

seguti@ics.uci.edu

* We thank the NSF-CONACyT collaboration grant (#IRI-9522999 in the US and #546500-5-C018-A in Mexico), the
CONACyT REDII grant in Mexico, as well as the "Asociación Mexicana de Cultura, A.C.".

Keywords: Neurosciences, Distributed processors,
Continuous, Differential equation solvers,
Hierarchical

ABSTRACT
As neural systems become large and complex,
sophisticated tools are needed to support effective
model development and efficient simulation
processing. Initially, during model development, rich
graphical interfaces linked to powerful programming
languages and component libraries are the primary
requirement. Later, during model simulation,
processing efficiency is the primary concern.
Workstations and personal computers are quite
effective during model development, while parallel
and distributed computation become necessary during
simulation processing. We give first an overview of
modeling and simulation in NSL/ASL together with
an example. We then discuss current and future work
with the system in the development and simulation of
modular neural systems executed in a single computer
or distributed computer network.

INTRODUCTION
In this paper we present an overview of the ASL/NSL
computational model for the simulation of neural
systems. This work is motivated by the quest to
simulate animal-like behavior as faithfully as possible
based on existing ethological, physiological and
anatomical neural data. At the higher level these
models are described in terms of schema (Arbib 1992)
modules corresponding to behavior agents (ethology)
simulated with ASL (Abstract Schema Language)
(Weitzenfeld 1993). At the lower level, neural

networks are described in terms of neural modules
(physiology and anatomy) simulated with the Neural
Simulation Language NSL (Weitzenfeld and Arbib
1994). Many models have been developed and
simulated with ASL/NSL (see Weitzenfeld et al.
2000a for examples of models involving perception,
visuomotor coordination, motor control as well as
technological neural applications).

Visual

Predator Avoid

Cue
Interaction

Heading
Map

Heading
Transaltor

Prey Approach

Snap

Forward

Orient

Duck

Maximum
Selector

Prey/Predator
Recognizer

Retina

Prey/Predator
Selector

Depth
Map

Depth
Transaltor

Tectum

Schema Level 2

Neural Level

Schema Level 1

Figure 1. Schema hierarchy for the toad's
prey acquisition and predator avoidance
models. The top two levels correspond to
schema levels (1 and 2) and the lower level
corresponds to neural modules.

For example, in Figure 1 we show a simplified
diagram of the toad's prey acquisitions and prey
avoidance model (Cobas and Arbib 1992), (schema
level 1) involving perceptual and motor schemas. The
external visual input is processed to generate

appropriate motor actions: forward, orient, snap and
duck. Schemas at this level are decomposed and
delegated to the next level down (schema level 2)
where schemas perform more specific tasks. Prey
approach and predator avoid schemas delegate their
tasks to a schema assemblage composed of a
prey/predator recognizer, a prey/predator selector,
depth and heading translators and maps. Next level
down, different neural modules: Retina, Tectum,
Maximum Selector and Cue Interaction, if available,
implement the actual neural network processing.

SCHEMAS AND NEURAL NETWORKS
To better understand the underlying computational
model, ASL/NSL defines a tree-like schema or
module hierarchy as shown in Figure 2.

Level 1
data in

data out

Neural Module

Level 2

Module
Schema level

Neural level

Figure 2. The ASL/NSL computational
model is based on hierarchical
interconnected modules. A schema module
at a higher level (level 1) is decomposed
(dashed lines) into additional interconnected
(solid arrow) schema submodules (level 2).
At the lowest level, neural modules are
implemented by neural networks (circular
objects).

Starting by the root module (known as the model),
modules are further decomposed into additional
submodules, having no limit on how many levels this
may reach. At the same abstraction level, modules are
interconnected (solid arrows), while at different levels
modules have their task delegated (dashed arrows).

Networks of submodules – module assemblages – are
seen in their entirety in terms of a single higher-level
module and may be implemented independently from
each other in both top-down and bottom-up fashion,
an important benefit of modular design. At the higher
abstraction levels, the detailed module
implementation is left unspecified, only specifying
the module's interface and what is to be achieved. At
the lowest level, schemas are implemented by neural
modules.

As a computational unit, every module incorporates
its own local structure and control mechanisms. Every
module defines an external interface made of a set of
unidirectional input and output ports supporting data
passing between modules together with a set of public
methods that can be externally invoked from other
modules. Communication between modules is in the
form of asynchronous message passing for both data
and methods. Internally, communication is
hierarchically managed through anonymous data port
reading and writing. Externally, communication is
managed through dynamic port connections (solid
arrows) - links between output ports in one module to
input ports in another module - and relabelings
(dashed arrows) - module ports at one level in the
hierarchy are linked to similar input or output ports at
a different level. The hierarchical port management
approach enables the development of neural
architectures where modules may be designed and
implemented independently and without prior
knowledge of the complete model or their final
execution environment, encouraging component
reusability and permitting module execution in a
distributed fashion (Weitzenfeld et al. 2000b).

For example, consider the depth perception problem
where a three dimensional scene is presented to the
two eyes. The depth perception model developed by
House (1989) uses two systems to build a depth map,
one driven by disparity cues - difference in retina
projection - while the other is driven by
accommodation cues - receiving information about
focal length. The corresponding simplified ASL/NSL
model consists of a Stereo s root module and three
interconnected submodules: Retina r, Depth m
(accommodation) and s (disparity), as shown in
Figure 3.

Depth m

Stereo s

Retina r

mf
s

a
in

in out

Depth s

mf
s

d

tf

tf

Figure 3. The Stereo module contains an in
input port and an out output port. It is further
decomposed into a Retina module containing
an input port in and two output ports, d and
a, for disparity and accommodation,
respectively. The Depth module consists of
an input port s, receiving data from the
Retina, a second input port tf, receiving input
from the other Depth module, and an output
port mf.

NEURAL SIMULATION
Neural networks define the lowest level in the
computational model. In general, neural simulation
varies depending on whether it relates to artificial o
biological systems. Artificial neural networks often
require two-stage simulation process, (1) an initial
training phase and (2) a subsequent processing or
running phase. On the other hand, biological neural
networks usually require a single running phase, in
which behavior and learning may be intertwined.
Initially, during the model development, the
simulation process involves interactively specifying
aspects of the model, such as network input and
parameters values, as well as simulation control and
visualization. As the model becomes more stable,
efficiency becomes the primary concern of the
simulation process and concurrency play an important
role, not only as a way to increase processing
performance but also to model neurons more
faithfully (Weitzenfeld and Arbib 1991). Yet, large
and complex models may require hours or even days
of processing time and distributed computing may
play a key role in speeding up computation.

Console

Display Graphics

SPAWN SPAWN

IPC Manager

Thread Scheduler

D1R
SPAP

IPC Manager

Thread Scheduler

D2

DP SP
MP

MP TP

TP

Graph Data Graph DataMachine1 Machine2

Figure 4. The distributed architecture of
ASL/NSL is conceptualized as a set of
autonomous (processing) nodes. Each node
may contain one or more schema modules
that communicate via asynchronous message
passing. The nodes do not share a common
address space and they are connected by
unidirectional communication links along
which messages are transmitted. A
communication link is not necessarily a
direct link, It can be any network path
connecting these schemas

Sequential and Distributed Processing
ASL/NSL provides an architecture to support both
sequential and distributed (as well as parallel)
simulations. In the sequential simulation, neural
dynamics are executed one equation at the time where
the output from one neuron is immediately fed as
input to the next one. In NSL the same procedure is
applied to modules, where each module would get
executed in a predetermined order sending newly
generated output port values immediately to their
corresponding interconnected input ports. This
approach simplifies simulation results in that the
order of computation depends directly from the order
of computation. To further simulate brain-like
concurrent behavior while doing sequential
processing, NSL interleaves module execution while
buffering output from one module to the next one,
making processing order unimportant. In the
distributed simulation, all simulation control as well
as graphical display take place in the console in one
of the machines responsible for distributing
processing among local and/or remote machines (see

Figure 4). The actual distribution is specified by the
user or automatically generated by the system
depending on the available machines in the network.

Since neural models are processing and
communication intensive, a distributed simulation
requires monitoring and resource management
capabilities in order to improve overall simulation
performance. Particularly, we are interested in (1)
identify processing bottlenecks, such as unnecessary
serializations between schemas or excessive model
fragmentation, (2) accomplish a cost-effective use of
the resources in the system and (3) optimize
communication performance.

Reflective meta-level architectures add introspective
capabilities to computational systems by providing
dynamic adaptability to internal and external
processing constraints (Smith 1982). Here, the
computation activities are separated into base and
meta level activities, representing the application
execution and the structures used to control its
execution respectively. This separation of concerns
allow us to monitor and reason about aspects of
communication and resource management without
affecting the normal behavior of the underlying
application execution. In fact, meta-level facilities
allows to provide more adequate control of modular
neural networks (Smieja and Muhlenbein 1992), as
well as improve the computational efficiency of the
network (Boers and Kuiper 1993) in a semantically
clean manner.

Meta-Level Architecture
In order to represent the resource and communication
activities going on behind the scenes without interfere
with the on-going computation (called also
perturbation), the meta-level architecture is design as
follows: (1) Each schema module has a meta-schema,
which represents the meta-level capabilities of the
base-level schema module, (2) The communication
between the schema and its meta-schema is
synchronous, in order to guarantee the integrity and
semantics of the neural simulation that could be
violated by some interleaving execution between the
meta and base level, (3) Each meta-schema is
composed by a computational and communication
model, (4) The computational model gathers resource
information of the schema it represents, (5) The
communication model monitors the

incoming/outgoing communication of its schema to
identify possibly communication bottlenecks and
evaluate different distribution strategies of the neural
model through postmortem visualization of the
communication primitives.

The computational model gathers the information by
accessing the internal structures of the kernel in a
modular way. Thus, it may be visualized as an plug-in
component tailored to an specific architecture, which
traces the following information for a particular
schema module: (1) The node workload, (2) The
statistic information of the node, such as number of
processes, memory and virtual memory available and
(3) performance statistics of the schema module such
as real cpu time (cpu-ticks), amount of memory
allocated, number of threads, priority assigned and
total size of the schema. On the other side, the
communication model uses a client-server logging
event model for communication primitives, in order to
minimize the degree of perturbation, while measure:
(1) Ports communication throughput, (2) Message
queue size, (3) Number of messages remaining in the
queue and (4) Message properties, such as size of the
message, type of the message, who is the sender, who
is the receiver.

The client-server logging event model works similar
to PGPVM (Brad Topol et al. 1994), but without
synchronization barriers. That is, there is a centralized
server which communicates with the underlying
network in order to satisfy communication service
requirements while providing distributed buffered
trace in PICL (Portable Instrumented Communication
Library) format (Geist et al. 1991) as follows (see
Figure 5):

1. The message send request is intercepted by the
meta-schema

2. The message properties are registered and a log
event for the transmission is generated and saved
in a local buffer

3. The transmission request is sent to the
communication server (eSvr), which in turn sent
it to the underlying network

4. The underlying network sent the message and
return and acknowledge to eSvr

5. eSvr return the control to the meta-schema,
which resume the base level application

6. At the end of the simulation, each meta-schema
sent the collected information to eSvr

7. eSvr consolidate the information and save it in
the trace database

8. A post processing of the information is required
in order to create a trace file, which will be the
input of the postmortem visualization program
ParaGraph (Heath and Etheridge 1991)

IPC Manager

Thread Scheduler

D1↑D1

IPC Manager

Thread Scheduler

D2

MP

MP TP

TP

Network

 eSvrTraceDB

BufferBuffer

Trace.trf

Machine1 Machine2

3 4

2

↑D2

5 3

78

1

6

6

Figure 5. A simple distributed neural
model composed of two schema modules
D1 and D2, in which communication is
restricted to their port interconnections

SIMULATION RESULTS
In this section we present the results of the depth
perception distributed simulation, realized with the
parameters shown in Table 1.

System
endTime

System
delta

Differential
delta

Differential
integration

2.0 0.05 0.05 Euler
Table 1. Simulation and approximation
method parameters.

Model CPU
(MHz)

Disk
(GB)

RAM
(MB)

Operating
System

Ultra-1 200 1 32 Solaris 2.6
Ultra-10 333 1 128 Solaris 2.6
Sparc-5 170 0.5 32 Solaris 2.6

Table 2. Hardware and operating system
parameters.

The underlying network infrastructure is a shared
Ethernet 10 baseT and the hardware specifications
shown in Table 2.

One of the most interesting parts of the simulation
was the frequency and volume of communication. As
we can see in Figure 6, the communication between

Depth1 and NslConsole (ranked node 0) or Retina
(node 1) is frequency intensive, while communication
between Depth1 and Depth2 (node 3) is volume
intensive

Figure 6. Communication frequency and
volume of Depth1

The lamport diagram of space-time, mainly
knowledge as the happens before relation, shown in
Figure 7 displays the order of the events during the
simulation

Figure 7. Lamport diagram of the simulation
with node 0 as the Nsl Console, node 1 as
Retina and nodes 2 and 3 as Depth1 and
Depth2 respectively.

REFERENCES
Arbib, M.A., 1992, "Schema Theory", Encyclopedia
of Artificial Intelligence, 2nd Edition, Editor Stuart
Shapiro, 2:1427-1443, Wiley.
Boers, E.J., Kuiper, H., 1993, "Biological Metaphors
and the Design of Modular Artificial Neural

Networks", Master Thesis, Dept. of Computer
Science and Experimental and Theoretical
Psychology, Leiden University, Netherlands.
Cobas, A., and Arbib, M.A., 1992, "Prey-catching and
Predator-avoidance in Frog and Toad: Defining the
Schemas", J. Theor. Biol 157, 271-304.
Geist, G., Heath, M., Peyton, B., and Woley, P, 1991,
"A User's Guide to PICL", Technical Report
ORNL/TM-11616, Oak Ridge National Lab.
Heath, M., and Etheridge, J., 1991, "Visualizing the
Performance of Parallel Programs", IEEE Software,
8(5):29-39.
House, D., 1989, "Depth perception in frogs and
toads: A study of in neural computing", Lecture notes
in Biomathematics, 80, Springer-Verlag.
Smieja, F.J., Muhlenbein, H., 1992, "Reflective
Modular Neural Network Systems", Technical
Report, German National Research Center for
Computer Science, May.
Smith B, 1982, "Reflection and Semantics in a
Procedural Languages", Technical Report 272,
Laboratory of Computer Science, Massachusetts
Institute of Technology.
Topol, B., Sunderam, V., and Alund, A., 1994,
PGPVM Performance Visualization Support for PVM,
Technical Report CSTR-940801, Emory University.
Weitzenfeld, A., 1993, "ASL: Hierarchy,
Composition, Heterogeneity, and Multi-Granularity in
Concurrent Object-Oriented Programming",
Proceedings of the Workshop on Neural Architectures
and Distributed AI: From Schema Assemblages to
Neural Networks, USC, October 19-20.
Weitzenfeld A & Arbib M, 1991, "Concurrent Object
Oriented Framework for the Simulation of Neural
Networks", Proceedings of ECOOP/OOPSLA'90
Workshop on Object-Based Concurrent
Programming, OOPS Messenger, 2(2):120-124.
Weitzenfeld, A., Arbib, M.A., 1994, "NSL, Neural
Simulation Language", Neural Networks Simulation
Environments, Editor J. Skrzypek, Kluwer.
Weitzenfeld, A., Arbib, M., Alexander, A., 2000a,
NSL - Neural Simulation Language: System and
Applications, MIT Press (to be published).
Weitzenfeld, A., Peguero, O., Gutierrez, S., 2000b,
"NSL/ASL: Distributed Simulation of Modular
Neural Networks", Proc of MICAI 2000, Acapulco,
Mexico.

BIOGRAPHY
Alfredo Weitzenfeld is currently an Assistant
Professor at the Computer Engineering Department at
the Autonomous Technological Institute of Mexico
(ITAM). He received his BS in Electrical Engineering
from Israel Institute of Technology (TECHNION). He
has an MS in Computer Engineering and a PhD in
Computer Science both from the University of
Southern California, where he was a Research
Assistant Professor. In Mexico he is the co-founder of
CANNES Laboratory for Brain Simulation and a
member of the Mexican National Research System
(SNI) as well as a member of the Doctoral Advising
Committee at the National Autonomous University of
Mexico (UNAM). He is currently supported by
Mexico´s funding agency CONACyT. Previously he
has received grants from NSF-CONACyT
collaboration projects with a number of US academic
institutions. His main research interests include
simulation systems, software engineering, artificial
intelligence, neural networks and robotics.

Sebastian Gutiérrez is currently pursuing a Ph.D.
from the University of California, Irvine. He received
his BS in Computer Engineering from the
Autonomous Technological Institute of Mexico
(ITAM). He worked as Research Assistant at
CANNES Laboratory for Brain Simulation. His main
research interests include semantic foundation for
composition of communication services in open
distributed systems, neural networks and clustering
for scientific computing.

