
“…Each place cell receives two different inputs, one 
conveying information about a large number of envi-
ronmental stimuli or events, and the other from a navi-
gational system which calculates where an animal is in 
an environment independently of the stimuli impinging 
on it at that moment. The input from the navigational 
system gates the environmental input, allowing only 
those stimuli occurring when the animal is in a particu-
lar place to excite a particular cell.

One possible basis for the navigational system relies 
on the fact that information about changes in position 
and direction in space could be calculated from the ani-
mal’s movements. When the animal had located itself in 
an environment (using environmental stimuli) the hip-
pocampus could calculate subsequent positions in that 
environment on the basis of how far, and in what direc-
tion the animal had moved in the interim… In addition 
to information about distance traversed, a navigational 
system would need to know about changes in direction 
of movement either relative to some environmental land-
mark or within the animal’s own egocentric space….”1

Today, more than thirty years after the discovery of 
spatially selective place cells in the hippocampus2 and the 
proposal that the hippocampus is the neural substrate of a 
‘cognitive map’3, it would be difficult to write a more con-
cise and accurate summary of our current understanding 
of hippocampal spatial encoding dynamics. The prescience 
of these theoretical suggestions is even more remarkable, 

given that it was not until 1980 that Mittelstaedt and 
Mittelstaedt4 provided the first conclusive demonstration 
that mammals possess an accurate system for keeping 
track of relative spatial location by integrating linear and 
angular motion (path integration; BOX 1), and not until 
1990 that Taube, Muller and Ranck5 published the first 
full report on the existence of head direction cells, which 
were found originally in the rodent dorsal presubiculum 
by Ranck6. Nevertheless, the history of the last 30 years 
of research aimed at characterizing the determinants of 
hippocampal neuronal activity in freely behaving animals 
has been rich with controversy, the central debate being 
whether location per se or sensory and cognitive factors 
provide the best predictor7–9. Partial resolution of this 
debate has been achieved by the discovery that, particu-
larly in area CA3 of the hippocampus, manipulating the 
external visual cues without altering the location in the 
environment, can dramatically alter place cell firing rate 
but not the location of firing10,11. The behavioural evidence 
for path integration in mammals, and its relationship to 
the firing of hippocampal place cells in the CA1 region, has 
been reviewed recently9,12 and will not be discussed further 
here. Rather, we focus on the questions of the nature of the 
probable ingredients of the underlying mechanism; where 
in the brain the circuitry that implements path integration 
resides; what sets the scale (or resolution) at which space 
is represented; and how these circuits might be wired up 
during development.
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Path integration and the neural basis 
of the ‘cognitive map’
Bruce L. McNaughton*¶, Francesco P. Battaglia§, Ole Jensen||, Edvard I. Moser¶ 
and May-Britt Moser¶

Abstract | The hippocampal formation can encode relative spatial location, without 
reference to external cues, by the integration of linear and angular self-motion (path 
integration). Theoretical studies, in conjunction with recent empirical discoveries, suggest 
that the medial entorhinal cortex (MEC) might perform some of the essential underlying 
computations by means of a unique, periodic synaptic matrix that could be self-organized in 
early development through a simple, symmetry-breaking operation. The scale at which 
space is represented increases systematically along the dorsoventral axis in both the 
hippocampus and the MEC, apparently because of systematic variation in the gain of a 
movement-speed signal. Convergence of spatially periodic input at multiple scales, from 
so-called grid cells in the entorhinal cortex, might result in non-periodic spatial firing 
patterns (place fields) in the hippocampus.
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Box 1 | Path integration in mammals and some neurophysiological correlates

Darwin recognized that most animals can use self-motion cues to keep track 
of their location relative to a ‘home base’128, but it was not until recently that 
firm experimental evidence for such a path integration process in mammals 
appeared4, and it became clear that the brain can not only calculate a homing 
vector to a fixed location in space, but can also maintain a map-like 
representation of space using only an initial reference and self-motion 
information (for reviews, see REFS 9,12). Making use of the strong motivation 
of female rodents to retrieve pups that have been displaced from the nest to a 
shallow cup some distance away, it was shown that gerbils can search in 
complete darkness and return in a direct line to the original location of the nest, 
even if the nest has been removed (see panel a). With the cup at the centre of 
the dark arena, rotating either the entire arena while the animal was on the 
cup, or only the cup itself, did not prevent the animal from returning to the 
same location in the (inertial) laboratory reference frame; however, rotation of 
the cup through 37 degrees with a slow acceleration profile (0.24 deg s–2), 
presumably below the animal’s vestibular threshold, resulted in a return 
trajectory error of the same magnitude. In panel a, S1–3 represent vectors 
lengths of segments of the outbound journey, and ϕ1–3 are corresponding 
head directions. Variables x1–3 and y1–3 are the cartesian components of the 
segment vectors which, in principle, could be summed to compute the 
homing vector. ‘Starting location’ refers to the beginning of the homing 
trajectory. Insight into the neural basis for angular path integration came from 
the discovery of head direction cells, the firing rates of which depend on the 
direction the animal’s head is facing (a simulated typical head direction cell 
tuning curve is illustrated in the polar plot in which firing rate is represented by 
the radial coordinate and direction is represented by the angular coordinate; 
see panel b). Directional tuning is relative in the sense that, although all head 
direction cells maintain their directional tunings relative to each other, the 
network is not bound to any absolute directional reference. For example, the 
same cell can have different geocentric directional preferences in different 
enclosures and, in the absence of visual input, head direction cells track head 
angular velocity and fire over a restricted range of relative directions; however, 
the network can accumulate directional error with respect to its original 
setting. Linear path integration is sufficient to update the positional firing of 
hippocampal pyramidal cells (see panel c). On a task in which a rat runs on a 
linear rail from a moveable box to a fixed goal at the end of the track, pyramidal 
cells in area CA1 fire in relation to distance from the box as the animal leaves 
it (over distances of more than several body lengths), before shifting reference 
frames to fire in relation to visual cues (CA1 light) or, in darkness, the end of 
the track (CA1 dark). The figure illustrates the configurations of the start box 
on the track and the journey types, which were presented in random order. 
Panel d shows the correlation matrices of CA1 neuronal ensemble population 
vectors for each location on the full track versus every location on the full 
track (Box 1), and for each location on the shortened tracks, in which the box 
was shifted closer to the fixed goal site (Box 2–Box 5), versus every location on 
the full track. The black lines represent the reference frame of the box; white 
lines represent the laboratory/track reference frame. Panel a modified, with 
permission, from REF. 140 ©  (1980) Springer. Panels c and d reproduced, with 
permission, from REF. 33 © (1996) Society for Neuroscience.
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Attractor dynamics
Attractor dynamics refer to the 
properties of a broad class of 
neural networks that have one 
or more stable states. These 
stable states are determined 
by the weights of the recurrent 
connections between the units 
(neurons) in the network. 
Depending on the initial 
conditions, the network will 
end up in one of the stable 
states. Attractor dynamics 
have been used in associative 
memory models, pattern 
recognition and as a 
mechanism for working 
memory maintenance.

Neural network models for path integration
Mechanisms based on self-organizing and self-sustaining 
neural activity, or attractor dynamics, such as those origi-
nally proposed in Hebb’s13 cell assembly theory, have been 
essential components in several models accounting for 
path integration and the head direction system in rats14. 
In path integration, the information to be maintained 
and updated is not a set of discrete items (as are found in 
Hopfield-type attractor networks for discrete memories); 
rather, it is a continuous variable representing position 
or head direction. A continuum of cell assemblies, or a 
continuous attractor15–19, is therefore needed to encode posi-
tion or head direction. Such a continuum can exist in one 
dimension, as in the case of direction; two dimensions, as 
in the case of location in the plane; or many dimensions. 
It is equivalent to a large set of correlated discrete attrac-
tors, in which the energy barriers between neighbouring 
attractors become negligible20,21.

In the head direction system, consider the head 
direction cells, which fire selectively with respect to the 
rat’s head orientation (φ) as a result, primarily, of neural 

integration of head angular velocity signals derived 
from the vestibular system. A model in which the cells are 
arranged conceptually in a circle, according to preferred 
direction, and in which the strength of the excitatory 
connections between two cells decreases with the dis-
tance between their respective preferred directions22–24, 
would result in a focused activity profile (or activity 
bump) centred at a direction φ (FIG. 1). An activity bump 
would arise spontaneously because, for a given total 
activity level, controlled by global feedback inhibition, 
each neuron within the bump receives the maximum 
possible excitation from its neighbours; therefore, the 
bump state is the most stable configuration of such a sys-
tem. Note that, because the cells are arranged in a circle, 
there are no edges, so the network is said to have periodic 
boundaries. In the absence of input other than random 
noise, the bump location is either stable or subject to a 
random drift in position; however, large instantaneous 
changes in bump location are unlikely.

To perform angular path integration, the bump 
would have to move around the circle in accordance 
with changes in the head orientation of the rat. This 
could be achieved by vestibular, rotational visual flow, 
and other angular velocity inputs that drive the bump 
in either a clockwise or anticlockwise direction. Suppose 
an additional circle of neurons (a so-called hidden layer) 
is interposed between the angular velocity signals and 
the head direction cells in the outer circle (FIG. 1), and that 
neurons in this circle encode the conjunction of current 
head direction, derived from top-down connections 
from head direction cells immediately adjacent to them 
in the circle, and angular velocity signals afferent to the 
network. If conjunctive cells receiving clockwise angular 
velocity inputs project asymmetrically to the right of the 
head direction cells from which they receive input, and 
those receiving anticlockwise inputs project to the left, 
the bump can be made to move around the circle in a 
manner consistent with the changing head direction 
— the system performs angular path integration. Note 
that the head direction cells in this model encode relative, 
not absolute, orientation. In the absence of additional 
sensory inputs, slow changes in head direction (below 
the vestibular threshold) or synaptic noise will result in 
disorientation, as shown by Mittelstaedt and Mittelstaedt4 
(BOX 1). However, all cells would maintain their angular 
firing preferences relative to one another, as is observed 
in recordings of head direction cells5.

Continuous attractor-based models for path integra-
tion of position in two dimensions can be constructed by 
a simple extension of the one-dimensional head direction 
model just described9,23,25–27. A two-dimensional continu-
ous attractor network could consist of cells arranged 
conceptually on a two-dimensional sheet according to 
their relative firing locations in two-dimensional space. 
A recurrent synaptic matrix can then be constructed in 
which the strength of the excitatory connections between 
two cells decreases in proportion to the physical distance 
between the cells’ respective place fields. Global feedback 
inhibition would, again, keep the activity from spread-
ing (FIG. 2). As in the one-dimensional model, a bump of 
focused activity would form spontaneously. Movement 

Figure 1 | One-dimensional attractor map model for head direction encoding 
based on neural integration of head angular velocity signals. a | Head direction 
cells are arranged symbolically in a circle in order of their relative head directional 
preferences. Each cell (coloured dots) connects with nearby cells with a synaptic strength 
(or connection probability) that declines as a function of distance (red and grey lines). 
The network is subject to global feedback inhibition (not illustrated) that limits the total 
neural activity. Activity in such a network has a most probable configuration in which the 
activity is focused at one point and declines with distance from that point (warm colours 
represent high activity, progressively cool colours represent progressively lower activity). 
Such a network would keep track of head direction if the hill or ‘bump’ of activity could 
be made to rotate around the ring in correspondence with changes in head direction. 
b | Rotation of the bump in the clockwise or anticlockwise directions can be achieved by 
an intermediate group of two types of conjunctive neuron that receive information 
about head angular velocity from the vestibular system (dashed arrows) and information 
about current head orientation from the cells immediately above them in the outer ring. 
The intermediate group of cells must be of two classes: cells receiving information about 
clockwise motion project to the right of the cells in the outer ring from which they 
receive input, whereas cells receiving anticlockwise vestibular signals project to the left. 
These hidden layer cells drive the activity bump in the corresponding direction around 
the ring. In the absence of motion, activation of all hidden layer cells is assumed to be 
below threshold. In this figure, only active connections are indicated, with the line 
thickness representing firing rate.
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Continuous attractor
Networks with continuous 
attractor properties can 
maintain a stable activity state 
over time; however, the 
possible states are not discrete 
as in attractor networks but 
can vary continuously. 
Continuous attractor networks 
have, for example, been used 
to represent the dynamics of 
the head direction system in 
which an arbitrary angle has to 
be maintained over time.

Vestibular system
The vestibular system provides 
information about movement 
and orientation in space. 
Receptors in the semicircular 
canals and otolith organs of the 
inner ear are sensitive to 
movements consisting of 
rotational and translational 
accelerations. Vestibular 
information can be processed 
in the CNS to derive relative 
changes in head direction or 
position.

Rotational visual flow
As the head turns, visual 
information flows past the eye. 
The rotational visual flow can 
be used to calculate and 
update relative head direction.

Torus
Consider an elastic rectangular 
sheet. When gluing together 
the two longer sides of the 
sheet a tube is formed. After 
gluing together the ends of the 
tube, a doughnut-shaped 
object is formed, which is 
termed a torus. If the elastic 
sheet represents a map of a 
spatial area, the creation of the 
torus will form a map with 
periodic boundary conditions 
along two perpendicular 
dimensions.

of the activity bump according to speed and directional 
information alone, thereby tracking the rat’s position, 
could be effected through a two-dimensional hidden 
layer analogous to the one-dimensional hidden layer in 
the head direction model28. This layer could accomplish 
the summation of the position (encoded in the continu-
ous attractor layer) and the displacement vector (com-
prised of head direction and linear speed signals). Cells 
in this direction-specific layer would encode, conjointly, 
the rat’s position and velocity vectors9,23,26; therefore, 
they would combine head direction and running speed 
inputs with location information from the attractor layer. 
Projections from the continuous attractor layer to the 
hidden layer would connect cells with the same posi-
tion preference (FIG. 2). The return connections from the 
hidden layer to the continuous attractor layer, however, 
would be offset according to the directional preference 
of the cell of origin: for cells in the hidden layer that are 
selective for position x, head direction φ would project 
to cells in the attractor layer with an integrated position 
shifted in the direction φ. As a consequence, when the 
rat moves, velocity modulated cells in the hidden layer, 
selective for direction φ, will be activated and provide 
an input that shifts the activity bump in the direction φ. 
The rate of increase in the firing rate of hidden layer cells 
with running speed v would determine the scale of the 
spatial representation, as seems to be the case in the hip-
pocampus (see below). Briefly, a stronger input from the 
direction-specific layer would cause the activity bump to 
move faster, thereby generating a rapidly changing, short-
scale representation (small place fields). Reducing the 
speed dependence of hidden layer cells would cause the 
activity bump to move more slowly, and would yield a 
coarser spatial representation (larger place fields).

One problem with the two-dimensional model 
described would have been familiar to pre-Columbus 
Europeans, who believed that the earth was flat and 
finite; what happens when the rat runs outside the area 
represented by the cells? To overcome this difficulty, 
Samsonovich and McNaughton26 proposed that the cell 
array in which the continuous attractor was represented 
had periodic boundaries, equivalent to a torus27. The 
torus topology is the two-dimensional analogue of the 
ring topology suggested for the head direction system. 
This periodic boundary condition implies that, as the rat 
runs in a straight line, a given cell should activate period-
ically. So, in a large, two-dimensional environment, each 
cell would have multiple place fields arranged in a square 
grid (FIG. 3). However, although hippocampal place cells 
can have multiple fields in a large enough environment29,30, 
periodic fields have never been reported.

Grid cells in the medial entorhinal cortex
The search for the navigational system postulated by 
O’Keefe1 focused initially on the hippocampus; indeed, 
if the environment and the animal’s behaviour remain 
constant, the activity of ensembles of place cells can 
be decoded to indicate accurately the animal’s loca-
tion within the environment31. However, except under 
unusual experimental manipulations, knowledge of the 
firing relationships among an ensemble of hippocampal 
place cells in one environment is of no value in predict-
ing even relative location in a separate environment32,33. 
The spatial codes in the hippocampus for different 
environments are orthogonal (statistically independent). 
Although the activity of a place cell can be influenced 
by, and can become coupled through experience to, 
conjunctions of environmental features, their firing 

Figure 2 | Extension of the one-dimensional attractor map concept to two dimensions: a model for path 
integration. Neurons arranged in a plane (a) have interconnections that decline in strength (or probability) monotonically 
with distance (red arrows). Notice that a boundary problem exists for connections near the edge of the layer of neurons. 
A solution for this problem is illustrated in FIG. 3. Global feedback inhibition (not shown) keeps the net activity within a 
narrow range, leading to a focused spot or ‘bump’ of activity somewhere in the plane (b). The bump can be made to move 
in correspondence with a rat’s motion using an intermediate layer of cells that are conjunctive for position on the plane 
and head orientation, if the activity of these cells is positively modulated by running speed and the cells encoding a given 
head direction project asymmetrically to the corresponding side of the cells in the attractor layer from which they receive 
input. The thresholds are arranged so that these hidden layer cells are silent when there is no motion.
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Orthogonal
Mathematically, two lists of 
numbers (vectors) with a 
correlation of exactly zero are 
said to be orthogonal. 
Hippocampal spatial codes are 
said to be orthogonal with 
respect to two arbitrary spatial 
environments if the locations 
and rates at which cells fire 
relative to each other are 
statistically independent.

also reflects how far and in what direction an animal 
has moved from a reference point, irrespective of the 
external sensory stimuli that impinge on it at a given 
moment28,32–35 (BOX 1). Accumulating evidence suggests 
that place cells express the output of a path integration 
mechanism9,14, but there have been conflicting evidence 
and views as to whether an intact hippocampus proper 
either performs, or is even required for, path integra-
tion12. In agreement with earlier suggestions that the 
path integration system might involve loops that include 
the entorhinal cortex26,36,37, recent studies have pointed to 
the medial entorhinal cortex (MEC) as a potential loca-
tion for the path integrator.

Some principal cells in the MEC have sharply delin-
eated firing fields that collectively signal an animal’s 
current position in a small environment as accurately 
as place cells in the hippocampus38. However, in a suf-
ficiently large experimental environment, many MEC 
cells exhibit a striking feature of their activity that is not 
seen anywhere in the hippocampus proper: a grid-like 
structure of place fields repeating at regular intervals 
over the entire environment, as implicitly predicted by 
the toroidal chart model26, except that the unit cell of the 
grid is not a square but a rhombus with internal angles of 
60 and 120 degrees39 (FIG. 4). Such a rhombus can also be 
constructed from two oppositely orientated equilateral 
triangles, giving rise to the descriptive term ‘triangular 
grids’39. The two formulations are descriptively, but not 
necessarily computationally, equivalent.

The geometrical structure and spacing of grid fields 
in layer II MEC neurons is independent of the size or 
shape of the environment39,40. The grid spacing and grid 
orientation of neighbouring grid cells is almost identi-
cal, but their grids are offset relative to each other in an 
apparently random manner, and all grid phases (offsets) 
are equally represented within a small region of cortex39. 
Unlike the hippocampus proper, in which the spatial fir-
ing relationship of any arbitrary pair of cells is essentially 
unpredictable across environments, the relative offset 
(spatial phase) of grid fields for any two cells appears to 
be universal (constant across all environments)40. This 
property is analogous to the behaviour of head direction 
cells, which similarly retain their relative preferred firing 
directions across environments5,35,41, and corresponds to 
the behaviour of the universal chart proposed in theo-
retical models of path integration25,26,37. In addition, some 
subicular place cells also appear to have such universal 
properties42. Grid orientation and scale at a given dorso-
ventral position is consistent across all layers of the 
MEC43, which would be necessary for a local region of 
the cortex to act as a path integrator module. Currently 
there are insufficient experimental data to determine 
whether grid orientation is consistent along the entire 
dorsoventral axis.

Activity patterns of grid cells in layer II can be 
updated by input from afferent structures44–46, but recent 
studies indicate that the integration of directional and 
positional information takes place within the grid 
network itself 

43, using neurons with conjunctive place 
and directional properties much like those predicted by 
Samsonovich and McNaughton26 (FIGS 2,3). Layers III, 
V and VI of the MEC contain not only grid cells, but 
also head direction cells and cells with conjunctive grid 
and head direction properties. All three cell types are 
positively modulated by running speed. Conjunctive 
cells are located predominantly in layers III and V, 
and the principal neurons there have extensive axonal 
projections up to the grid cell population in layer II 
(REFS 47–49), where they could drive the shift in the 
active grid cell population in a manner consistent with 
an animal’s motion. By way of their superficial dendrites 
(BOX 2), these conjunctive cells are also likely to receive 
input from grid cells in layer II, as predicted by the con-
tinuous attractor model (FIG. 2). Given the presence of 

Figure 3 | Solving the boundary problem for the path integration network. a | The 
problem with a planar path integration system is that the size of the mapping space is 
limited by the number of cells. The rectangles represent a hypothetical ‘attractor map’ (or 
‘chart’26) without periodicity in the synaptic matrix. b | As described in FIG. 2, each node 
represents a cell, and warm colours represent high firing rates. Samsonovich and 
McNaughton26 deal with the problem of edge effects in their path integrator model by 
postulating that the connections of cells at the edges wrapped around, creating a 
periodic boundary in two dimensions analogous to the periodic boundary condition of 
the head direction model. This gives rise to a synaptic matrix with a toroidal topology (c). 
This solution solves the edge effect problem in terms of dynamics, but does not really 
solve the positional ambiguity problem because it predicts that, if the animal explores a 
large enough space, each place unit will be activated periodically, giving rise to (d) a 
rectangular distribution of place fields. d | The red and black arrows represent the 
movement of the activity bump across the layer, and its reappearance at the opposite 
side with sufficient travel in one direction, due to the periodic connection matrix. The 
right panel illustrates the fact that, if the animal thoroughly explored a sufficiently large 
environment, a periodic matrix of this type would result in spatial firing fields that repeat 
at regular spatial intervals, giving rise to a square grid of activity maxima.
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Allocentric space
In contrast to egocentric spatial 
representations, in which 
locations are encoded relative 
to a body axis (for example, 
‘three feet to one’s left’), 
allocentric representations are 
independent of the observer’s 
orientation (for example, ‘three 
feet to the north of one’s 
current location’) or possibly 
even position (for example, 
‘32°N, 111°W’). A road map is 
an example of an allocentric 
representation of space.

Population vectors
A population vector is a list of 
the instantaneous firing rates of 
a population of neurons. For N 
neurons, it represents a point in 
an abstract, N-dimensional 
space. It provides a convenient 
representation of the state of a 
neural ensemble.

horizontal connections in MEC layers III and V 
50, attrac-

tor dynamics could potentially be accomplished in the 
deeper layers alone27,51; in this situation, layer II might 
act as an output layer, integrating activity from deep cells 
with different directional preferences to achieve a non-
directional spatial representation.

Therefore, as an animal moves through its envi-
ronment, the location-specific activity in the grid cell 
network is probably updated principally by a path inte-
gration-based mechanism. The spatial code is therefore 
a relative one, in the sense that the firing of one set of 
cells is determined by the preceding activity state of the 
network and the distance and direction moved by the 
animal in the intervening time, and is not determined 
directly by the pattern of environmental stimuli received 
by an animal at a given location. This possibility is con-
sistent with the environmental invariance of the grid 
field relationships to one another, the imperviousness 
of the grid structure and spacing to removal or displace-
ment of external landmarks, and the fact that the grids 
are expressed immediately in a novel environment39,40. 

These observations suggest that grid cells are part of 
a universal spatial metric similar to the navigation 
system postulated by O’Keefe1, and are consistent with 
the inability of animals with entorhinal lesions to cal-
culate a return path to their home cage on the basis of 
self-motion cues52.

Similar to both head direction cells5,14 and hippoc-
ampal place cells 33–35,53, although self-motion is vital for 
updating the relative position code in the grid network, 
the spatial coordinate system defined by the grid net-
work can become anchored to the specific landmarks of 
individual environments. Grids assume similar phases 
and orientations with respect to external landmarks on 
repeated exposures to the same environment, irrespec-
tive of where the animal starts its run39. The association 
of path integrator coordinates with specific landmarks 
might take place in the hippocampus, which generates 
unique representations for individual environments as 
well as distinguishable events or internal states associ-
ated with a given episode in these environments11,54–57. 
Alternatively, this association might occur within the 
MEC itself, by combining grid activity with specific 
sensory inputs received from the postrhinal cortex. The 
MEC grid cells express location specific variation in the 
amplitude of the grid bumps39. This variation might 
reflect intrinsic inhomogeneities, external information 
afferent to the entorhinal cortex from other cortical 
areas, or return projections from the hippocampus to the 
deep and superficial layers of the entorhinal cortex47,48,58. 
Given that path integrator errors in hippocampal place 
cells and head direction cells are tightly coupled35, it 
appears likely that the alignment of the path integrator 
system reflects a global network interaction.

What sets the scale of the cognitive map?
A map of allocentric space must be endowed with a scale 
at which relative distance is represented. One attempt to 
address the question of scale in the hippocampus made 
use of a graph theory framework, in which CA3 place 
cells constituted nodes, with distance being represented 
by the connection strength between cells59. This model 
provided a possible basis for encoding relative distances 
and for route planning, but its main drawback was the 
lack of a plausible mechanism for reading out the synaptic 
weight parameters. A related proposal is that the distance 
between two locations is inversely related to the correla-
tion of the population vectors of hippocampal neuronal 
ensembles active at the two places60–63. Although plausible 
neural mechanisms can be proposed for reading out the 
similarity of two population vectors, place cell popula-
tion vector correlations beyond a certain distance are 
effectively zero. Based on the typical size of a dorsal hip-
pocampal place field reported in the literature, this dis-
tance would be only 30–40 cm. However, this difficulty is 
mitigated considerably by the observation that place field 
size varies systematically from the dorsal (septal) pole of 
the hippocampus to the ventral (temporal) pole62–64. The 
scale of the spatial code can be defined in a manner that 
is independent of any particular definition of a place field 
by plotting the mean correlation of population vectors as 
a function of spatial separation (FIG. 5f). In area CA1, the 

Figure 4 | Grid cells in the medial entorhinal cortex. a | Implausible as the idea might 
have seemed, cells with regular, periodic place fields are found in the medial entorhinal 
cortex (MEC); however, the arrangement of fields is not rectangular as would have been 
predicted from the Samsonovich and McNaughton26 model implemented on a standard 
torus. Instead, they are distributed with a geometry that can be described as a tiling of 
rhomboids (or of equilateral triangles alternately rotated 180 degrees). The recording 
region is illustrated on a sagittal section of brain through the MEC. Each panel is the grid 
field of one MEC neuron in layer II. The locations of emitted spikes are illustrated with red 
dots; the paths of the rat as grey lines. The grid scale increases with distance from the 
border of the MEC with the postrhinal cortex (POR). b | In addition to ‘pure’ grid cells, 
which encode position only, the deeper layers of the MEC also contain head direction 
cells that are not modulated by location, and (c) conjunctive cells that depend on 
location and head orientation (polar plots represent directional firing rate). All cell 
classes are positively modulated by running speed. These are precisely the cell classes 
predicted in the path integrator model of FIG. 2. DG, dentate gyrus.
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half-amplitude width of this function varies from roughly 
25 cm at a distance of 1.5 mm from the septal pole to 
42 cm at a distance of about 4.5 mm63. Linear extrapola-
tion would put the half-amplitude width of the decorrela-
tion function at the most ventral tip at a metre or more.

According to the path integrator model (FIG. 2), the 
size of the place field, and therefore the scale at which 
space is represented in the brain, is controlled not by 
external input but by the relationship between the speed 
of the rat and the speed at which the activity bump moves 
across the attractor layer. The notion that hippocampal 
neuronal activity is tightly coupled to voluntary motion, 
in particular locomotion, was first substantiated by 
Vanderwolf and colleagues65,66, who showed that the larg-
est amplitude of rhythmic slow activity, or theta rhythm, 
in the CA1 field of the hippocampus was associated with 
walking, and that the amplitude increased with speed. 
During unrestricted natural locomotion, the amplitude 
of hippocampal theta waves increases essentially linearly 
with running speed, or distance displaced during bal-
listic movements such as jumping60,67,68. Running speed 
also monotonically affects the firing rate of hippocampal 
pyramidal cells and many interneurons, at least over 
most of the normal range of locomotion speeds (up to 
~30–40 cm sec–1) (REFS 61,63,69,70). Interestingly, when 
animals trained to tolerate tight restraint are moved 
passively through the environment, the activity of place 
cells at a given location in the unrestrained condition is 
practically abolished71, suggesting an important role of 
motor set (the preparedness for movement) in driving 
hippocampal neurons.

A deeper insight into the role of self-motion in 
determining the scale factor of the hippocampal spatial 
code came from a study in which potential sources of 
self-motion information available to a moving rat were 
systematically altered60. When self-motion signals are 
attenuated, the hippocampus behaves as if the rat were 
moving more slowly, over a smaller distance, making 
place fields appear substantially (roughly threefold) 
larger (FIG. 5). These effects were associated with large 
reductions in the gains of the functions relating ampli-
tude of the hippocampal theta rhythm and cellular 
firing rate to movement speed. Therefore, the scale of 
hippocampal place fields might be determined by a 
movement-speed signal that is generated outside the hip-
pocampus through a summation of components related 
to ambulation, vestibular activation and optic flow. A 
corollary of this conclusion is that the change in spatial 
scale along the septotemporal axis of the hippocampus 
might be explained by a systematic variation in the gain 
of the motion signal. This hypothesis was confirmed63 by 
showing that the functions relating theta amplitude and 
relative firing rates of CA1 principal cells and interneu-
rons to running speed become systematically less steep 
as the recording location moves temporally along the 
septotemporal axis.

Grid fields also scale up along the dorsoventral axis 
of the MEC38,39. At the most dorsal end of the MEC, 
from which projections arise to the more septal por-
tion of the hippocampus, grids are dense, with a spacing 
of 35–40 cm39,43. The spacing increases approximately 
1.5 times over the next 1 mm, which corresponds to 
approximately one-quarter of the dorsoventral axis of 
the MEC. More ventral locations have not been system-
atically explored, but existing data from the authors’ 
laboratories indicate that grid and/or place field scale 

Box 2 | Entorhinal cortex anatomy

The entorhinal cortex 
constitutes the major interface 
between the hippocampus 
and the parahippocampal 
cortex45,129,130. The ento  rhinal 
cortex curves around the 
caudal and ventral portion of 
the hippocampal formation, 
projects extensively to each of 
its subfields, and receives 
strong return projections from 
area CA1 and the subiculum. It 
also has complex and only 
partly understood intrinsic 
circuitry 

46.
Panel a shows a 

ventroposterior view of a rat 
brain, showing the entorhinal 
cortex to be located mostly 
ventral and medial to the 
rhinal fissure (green line), 
below the postrhinal (POR) 
and perirhinal (PER) cortices. 
Based on cytoarchitectonics and connectivity, the entorhinal cortex can be divided into 
medial and lateral subdivisions (MEC and LEC). Both directly and through the POR, the 
MEC receives 3–4 times more input from occipital, retrosplenial and parietal cortices; the 
LEC has stronger connections with the PER and, directly or indirectly, the frontal, 
piriform, insular, olfactory and temporal cortices45,46. Axons from layer II of the MEC and 
the LEC innervate different dendritic segments of the same cells in the dentate gyrus and 
area CA3. Axons from layer III project to area CA1 and the subiculum, but MEC and LEC 
terminals segregate along the proximodistal axis of the two subfields46. Orthogonally to 
the medial–lateral subdivision, the entorhinal cortex exhibits a gradient of differences in 
extrinsic and intrinsic connectivity 

45,129,131,132. The dorsolateral region (dark red), running 
along the border with POR and PER, receives most of the visuospatial input to the 
entorhinal cortex and is reciprocally connected to the dorsal part of the hippocampus. 
Further from the rhinal sulcus (where red turns into blue), the entorhinal cortex receives 
progressively less input from the sensory association cortices, including PER and POR, 
and more from various subcortical areas including the hypothalamus and amygdala. 
These parts of the entorhinal cortex have strong reciprocal connections with the 
intermediate and ventral regions of the hippocampus.

Panel b shows some principal cell types in the entorhinal cortex and their primary 
dendritic and axonal arborization. Stellate cells in layer II have axonal collaterals in layers 
I–III; axons from pyramidal cells in layer III collateralize broadly in layers I and III 
(REF. 49,133,134). Nearby principal cells are connected through extensive recurrent 
connections in layers III and V but this is less apparent in layer II (REF. 50). The deep layers 
are strongly connected to the superficial layers. Axons from layer V cells ascend to the 
pial surface and branch widely when entering the upper three layers47,58. Although local 
collaterals from superficial cells generally remain in layers I–III, layer II and III cells might 
influence cells in layers III and V because the apical dendrites of layer V extend all the 
way up to the surface, allowing possible synaptic contact between the layers47,49,58,135. The 
extent of synaptic connectivity between cell classes in the various layers of the 
entorhinal cortex is not well understood, but the pattern of dendritic and axonal 
branching, and the common behavioural correlates of deep and superficial neurons43, 
suggest that the layers operate as an integrated network with significant computational 
power even in the absence of the loop through the hippocampus38. The diversity of 
entorhinal interneurons136 is not indicated in the figure. Blue, axons and axon collaterals; 
black, soma and dendrites. Panel a is modified, with permission, from REF. 43 © (2006) 
American Association for the Advancement of Science.
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Theta rhythm
Spontaneous oscillatory 
activity (4–12 Hz) detected in 
the local field potential of the 
rat hippocampus. The theta 
rhythm is produced by large 
ensembles of hippocampal 
neurons oscillating in 
synchrony, and is coherent in 
phase throughout the 
hippocampus. Its amplitude, 
however, varies systematically 
along the septotemporal axis 
of the hippocampus.

‘Beat’ effect
When two pure tones (or 
periodic signals of any kind) of 
different frequencies are added 
together, a tone of lower 
frequency (the difference 
between the two fundamentals) 
emerges due to the gradual 
shift of relative phase of the 
two signals, which causes 
cancellation and summation 
alternately. In music 
terminology, this lower 
frequency is called a ‘beat’.

is perhaps of the order of one to several metres at the 
most ventral locations. It is not yet known whether 
the scale increases linearly.

From periodic grids to non-periodic place fields
The combination of grids at variable scales might pro-
vide an economical, high-resolution spatial coordinate 
system for navigation over a large space, and could 
explain why hippocampal neurons downstream from 
the MEC do not express grid-like fields, but nevertheless 
express increasing place field size along the septotem-
poral axis. If grid cells had a single, common scale, the 
hippocampal code might be expected to repeat itself at 
intervals corresponding to a single period of the grid. 
However, if hippocampal activity reflects the summation 
of the outputs of many grids with different spacings, the 
cycle for repetition might be very large (FIG. 6), enabling 
each position to be expressed by a unique pattern of col-
lective activity. The repetition cycle could be consider-
ably larger than the scale of the largest grid, because of 
‘beat’ effects, such those seen when two cosine functions 
with slightly different frequencies summate, giving rise 
to frequency components much slower than either of 

the generating functions, depending on the difference 
between the frequencies. When multiple grid fields at 
different scales are summated, a single dominant peak 
arises, the scale of which is set by the smallest scale of 
the input set. Because each point on the septotemporal 
axis of the hippocampus receives input from a limited 
range of MEC cells (BOX 2), this idea can explain why 
place fields in the hippocampus also scale up along the 
septotemporal axis.

An important point to note is that, according to the 
simple path integrator model (FIG. 2), only one scale is 
possible because the bump of activity must move coher-
ently. Therefore, different scales must be achieved by 
having multiple weakly interacting or non-interacting 
path integrator modules. Simply varying the gain of 
the speed signal across modules would then give each 
module a characteristic spatial scale.

Remapping in the hippocampus
A crucial step in encoding a new episodic memory is 
the minimization of similarities between the new rep-
resentation and representations that already exist in the 
network. The hippocampus is thought to contribute to 

Figure 5 | Changing the gain of the self-motion signal changes the scale of the spatial representation. a | Rats were 
trained to press a lever to activate a mobile platform which moved around a circular track, and to stop at particular 
locations for a reward60. b | Laps of driving were interspersed with laps of walking. During driving, individual place fields 
were roughly threefold larger, peak firing rates were lower, and fewer cells expressed place fields on the track. There was 
also a reduction in the slopes of the functions relating electroencephalogram theta rhythm amplitude and cell firing rate 
to movement speed. c | A spike raster from one representative neuron during walking and driving. Each row reflects a 
single lap around the circular track (represented linearly) and the tick marks represent spikes emitted as a function of 
location during each lap. In this example, the field remained approximately in the same location, but often the fields 
changed locations unpredictably or disappeared (that is, they were remapped). d | Population vector correlation matricies 
showing that during driving, the population vectors became decorrelated much more slowly as a function of location than 
during walking. e | Average population vector correlations versus spatial separation for walking and driving. In the absence 
of the motor and proprioception components of the self-motion signal, the network behaves as if the rat is moving more 
slowly, and around a smaller track.
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this through a pattern separation process, whereby small 
differences in cortical input patterns are amplified as they 
propagate through the hippocampal network, creating 
differences in the locations and/or firing rates for place 
fields72,73. This process, often referred to as remapping74, 
has been observed after changes in a subset of the sen-
sory cues (such as the geometrical shape or colour of the 
test chamber) in an otherwise constant environment75–77. 
It can also be induced by changes in task demands, 
such as a shift from a free foraging task to an instru-
mental running task78, or by changes in the relationship 
between the current setting of the head direction system 
and the salient external cues35. In old animals, complete 
remapping can occur spontaneously in a highly familiar 
environment from one visit to the next79.

The first indications of remapping were observed in 
area CA1, yet most theoretical models would suggest that, 
based on the connectional divergence and the recurrent 
connectivity of the earliest stages of the hippocampal 
input, remapping in the CA1 reflects pattern separation 
mechanisms upstream in the dentate gyrus and CA3 
subfields. Based on analogies with the cerebellum, where 

decorrelation has been postulated to be accomplished by 
the dispersal of incoming sensory information onto a 
vastly expanded layer of granule cells before the infor-
mation reaches the associative synapses of the Purkinje 
cells80,81, it has been suggested that input from the 
entorhinal cortex is decorrelated as it is spread out onto 
a larger number of granule cells in the dentate gyrus72. In 
addition, the firing of the granule cells is sparse, and each 
granule cell makes synapses with only a limited number 
of CA3 pyramidal cells, suggesting that a combination of 
mechanisms might potentially contribute to decorrela-
tion of cortical information. Whether these hypothetical 
mechanisms represent the origin of the orthogonaliza-
tion required for remapping in the hippocampus remains 
to be determined; however, when rats are tested in two 
similarly shaped enclosures with different background 
contexts, the subsets of cells active in area CA3 in the 
two rooms are completely orthogonalized, showing no 
more overlap in activity than expected by chance82,83. The 
strong orthogonalization of spatial representations in the 
CA3 points to pattern separation as a major function of 
the early stages of hippocampal formation.

Figure 6 | Combining multiple periodic grids at different spatial scales can result in non-periodic place fields. 
a | The effects of slight variation in grid scale (6% in this case) on the periodicity of a mapping space defined by the 
superimposition of the output of two grid modules. In general, the summation of two periodic signals that differ in 
frequency gives rise to a signal with amplitude maxima that occur with a much lower frequency (the difference between 
the fundamental frequencies). b | Multiple grid fields with different scales, as expressed by cells at different dorsoventral 
levels of the medial entorhinal cortex can be combined, for example, by linear summation, resulting in an activity field that 
has only one large maximum. The spatial frequency of the patterns increases systematically from left to right. A simple 
thresholding operation applied to the summed grid fields (here implemented by a sigmoidal function shown in red) yields 
a field that is restricted to a region of space. This is a potential mechanism for the generation of non-periodic place fields 
such as those observed in the hippocampus.
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Recent observations have indicated that remapping in 
the hippocampus has two different modes, referred to as 
global remapping and rate remapping11. Global remap-
ping is a complete reorganization of the hippocampal 
place code, expressed by independent rate and place 
distributions in the different test conditions. Global 
remapping is normally induced when the animal moves 
between different environments (for an exception, see 
REF. 84), but it can also occur after substantial changes 
in cue configuration at a single location85, as observed in 
the first studies of remapping76,77. Rate remapping refers 
to a selective change in the distribution of firing rate with 
no change in the place code11. Rate remapping can occur 
when the animal is tested with different cue configura-
tions in the same location. Both forms of remapping take 
place in both CA3 and CA1 regions, but the distinction 
between them is most striking in the CA3 (REF. 11).

Preliminary data suggest that global remapping and 
rate remapping are associated with different popula-
tion dynamics in entorhinal grid cells40,86. When global 
remapping is induced in area CA3 by changing a number 
of box features (including the geometry and the floor 
texture) without moving the enclosure, the induction 
of hippocampal remapping is invariably accompanied 
by a coherent offset of the grid fields of simultaneously 
recorded colocalized MEC neurons. When global remap-
ping is induced by moving the rat to a different room, 
the population grid is not only displaced, but is typically 

also rotated. Rate remapping in CA3, induced by chang-
ing only the colour of the recording enclosure, was not 
accompanied by any realignment of the grid fields, 
suggesting that the non-spatial information triggering 
this form of remapping might be conveyed to the hip-
pocampus either by a minor redistribution of firing rates 
within the spatially constant population grid in the MEC 
or by inputs from other brain regions.

Among the other brain regions that could provide 
non-spatial sensory input to the hippocampus, the strong-
est candidate is the lateral entorhinal cortex (LEC), the 
cells of which do not appear to exhibit spatial activity 

87. 
The LEC has strong bidirectional connections with the 
piriform, insular, olfactory and temporal cortices45,46, 
which could provide it with multimodal sensory input 
sufficient to trigger rate remapping in the hippocampus.

Alternative cortical pathways to the hippocampal 
region include direct projections from the presubiculum 
and parasubiculum88, and the perirhinal and postrhinal 
cortices89,90; however, except perhaps for the projection 
from the parasubiculum to the dentate gyrus88, these 
connections are sparse compared with the entorhinal 
input, and their terminals reach only limited parts of 
the transverse axis of the hippocampus. 

Theory for grid network self-organization
The regularity of MEC grid fields, the independence of 
their spatial relationships from external influences, their 
colocalization with conjunctive cells and the motion 
sensitivity of all cell classes appear, in principle, suffi-
cient to implement path integration. These factors also 
suggest that MEC circuits underlying grid fields could 
become organized early in development, possibly in a 
manner that is relatively independent of experience. An 
experience-independent developmental process is also 
suggested by the fact that large-scale MEC grids (and 
hippocampal place fields) are observed in ventral regions 
of the hippocampal formation in laboratory rodents, 
which have had little, if any, exploratory experience in 
environments larger than a typical rodent housing cage. 
How might the hypothetical periodic synaptic matrix of 
the grid layer be self-organized?

Early insights into some universal principles that 
might underlie grid network development came from 
a theoretical proposal by Alan Turing in 1952 (REF. 91). 
He proposed that a simple reaction-diffusion chemical 
mechanism could produce spatially organized structures 
spontaneously, through competition between reagents 
termed activators and inhibitors. If inhibitors diffuse 
faster than activators, spatial patches can emerge in which 
the activator concentration is high, surrounded by areas 
of high inhibitor concentration. Therefore, this spon-
taneous symmetry breaking, which has been observed 
in chemical reaction systems, can create structures with 
periodic spatial properties such as stripes of alternating 
regions of high activator or high inhibitor concentra-
tion, or grids of many, roughly circular, regions of high 
activator concentration surrounded by regions of high 
inhibitor concentration (BOX 3). These regions typically 
appear in their closest packing density configuration, and 
therefore resemble MEC grid fields. Turing proposed that 

Box 3 | Turing structures produced by the CIMA reaction in a gel

In 1952, Alan Turing91 
proposed a mechanism 
for how structures could 
emerge spontaneously in 
chemical systems, and 
suggested that such a 
mechanism could 
underlie pattern 
formation in nature (that 
is, morphogenesis). In the 
proposed mechanism, 
diffusion-driven 
instabilities could occur in a homogeneous mixture of chemically reacting species, 
producing spatially periodic patterns. The chemical reactions considered involve an 
auto-catalytic activator species. The increase in the activator provokes the increase in a 
counter-balancing inhibitory species. A crucial requirement for the Turing instability is 
that the diffusion rate of the inhibitor is larger than that of the activator; this allows for 
local growth of the activator being limited in its spread by the faster diffusing inhibitor. 
This scheme will repeat itself in the spatial domain, eventually producing structures with 
a characteristic wavelength. Although the Turing instability has been studied intensively 
in theory, it was in 1990 that Castets et al.137 managed to experimentally produce the 
Turing pattern in a chemical system. They used the chlorite-iodide-malonic acid (CIMA) 
reaction, in which iodide and chlorite are the activator and the inhibitor, respectively. 
Castets et al. performed the reaction in a gel loaded with polyvinylalcohol, which is a 
macromolecule that has a slow diffusion rate. Importantly, the macromolecule partly 
binds the iodide, effectively slowing down the diffusion of the activator. Under these 
conditions, Turing structures emerged spontaneously in the gel. Depending on the 
reaction parameters, the emergent patterns consist of either regular grids, reminiscent of 
medial entorhinal cortex grid fields (panel a), or stripes (panel b), reminiscent of ocular 
dominance bands in the visual cortex. Neural networks consisting of mutually excitatory 
principal cells and feedback inhibitory cells can produce such Turing instability as well, by 
making the range of inhibitory connections longer than the excitatory ones. Figure 
reproduced, with permission, from REF. 138 © (2002) World Scientific.
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Difference of Gaussians or 
Mexican hat
If two Gaussian curves with 
different variances are 
subtracted from one another, 
the outcome is a curve that has 
a central peak with surrounding 
troughs (or vice versa). 
Depending on the difference in 
variance of the initial curves, 
the outcome can resemble a 
sombrero or ‘Mexican hat’. This 
description has been applied, 
for example, to simple cells of 
the visual system with 
excitatory centres and 
inhibitory surrounds.

Tetrode
Extracellular potentials 
generated by a spiking neuron 
decline with distance from the 
current source. A tetrode is a 
four channel recording probe 
that can be used to isolate 
spike trains simultaneously 
from multiple neurons within a 
small region of brain, based on 
the relative amplitudes of 
spikes appearing 
simultaneously on the different 
channels.

such a mechanism could be responsible for some types of 
morphogenesis or pattern formation in biology.

This simple reaction-diffusion mechanism also has a 
neuronal implementation92. Consider a network of excita-
tory and inhibitory neurons arranged randomly but with 
uniform density on a cortical sheet, and with a connection 
strength that decreases with distance. If the connections 
of inhibitory cells extend over a wider range than the 
connections of excitatory cells93 (difference of Gaussians 
or Mexican hat connectivity profile; FIG. 7), the symmetry 
can be broken, allowing for patterns to emerge spon-
taneously. This connectivity profile is related to that of 
the continuous attractor networks described in FIGS 1–3, 
in which a global, uniform inhibition leads to a stable 
state with a single activity bump. In the case of the 
Mexican hat connectivity, the finite range of the inhibi-
tion allows for continuous attractors with multiple activ-
ity bumps. In a two-dimensional domain, several types 
of structure can emerge. The simplest type is a striped 
firing pattern that resembles the ocular dominance col-
umns in the visual cortex. A second type of firing pat-
tern is a grid-like arrangement of activity bumps. The 
spatial wavelength of the activity pattern is determined 
primarily by the width of the Mexican hat connectiv-
ity profile. The striking and unexpected regularity of 
both the Turing symmetry breaking and the grid cell 
phenomenon is so compelling that a possible connection 
between the two is unlikely to have escaped the attention 
of many who are familiar with both94; indeed, at least two 
theoretical proposals for grid cell mechanisms based on 
these principles have already appeared51,95.

However, the idea that the Turing grid emerges as 
a topographical pattern on the MEC implies that grid 
cells that are near one another in cortical space would 
have grid fields with similar phases. By contrast, grid 
cells recorded from the same tetrode have widely scat-
tered grid phases39. To overcome this problem, it has 
been suggested51 that modules of the hypothetical MEC 
topographic grid might be small, and therefore could 
contain so few neurons that a single recording electrode 
might record a wide range of grid phases. This seems 
unlikely, because the regularity of the Turing structure 
is highly dependent on the cooperative activity of many 
cells, and the system presumably must operate in the face 
of considerable noise. Theoretical studies19 have shown 
that the stability of continuous attractors is sensitive to 
the sorts of inhomogeneities that would be expected in 
networks containing few neurons. This argues against 
a topographical arrangement of grid cells in the adult 
MEC and provides a challenge to topographic mod-
els that require Mexican hat-like connections among 
topographically arranged grid cells.

The compromise that we propose is that larger-scale, 
topographically organized grids of activity might be a 
feature of the immature cortex during early postnatal 
development (approximately weeks 1–2). We assume 
that the necessary Mexican hat connectivity can be 
implemented by having a mixed layer of interconnected 
excitatory and inhibitory neurons, with longer-range 
connections in the latter, so that no self-organizing 
process is required at this stage. We hypothesize that 

such an early developmental phenomenon could guide 
the development of multiple modules in the MEC, gen-
erating a toroidal synaptic matrix in each, but without 
topography in the physical layout of the neurons. Such 
modules would form the basis for grid cell behaviour in 
the adult and, in particular, could account for the steep 
gradient of spatial scales observed along the dorsoven-
tral axis. The hypothesis has four components (FIG. 8): a 
developmentally transient ‘teaching’ layer, endowed with 
Mexican hat connectivity that results in Turing symme-
try breaking (the ‘Turing layer’); a set of modules analog-
ous to a cortical column, in which intrinsic connectivity 
is relatively high but interactions with other modules are 
relatively weak; and two well-known types of activity-
dependent synaptic modification rule, for which there 
is abundant biological evidence. The requisite synaptic 
modification rules are a competitive learning rule (such 
as soft competitive learning96, or a variant of the well-
known BCM (Bienenstock–Cooper–Munro) rule97) that 

Figure 7 | Symmetry breaking and the emergence of a 
grid-like firing pattern. The Turing symmetry-breaking 
mechanism91 described in BOX 3 has a simple analogy in 
the behaviour of neural nets with feedback excitation and 
surround inhibition. a | The ‘Mexican hat’ connectivity 
profile required for pattern formation. Colours represent 
net excitation (red) and inhibition (blue) as a function of 
distance from an arbitrary point on the layer of cells. 
The connections of inhibitory cells extend further than the 
connections of excitatory cells. b | A network simulation 
demonstrating the emergence of an ordered activity 
pattern from random initial conditions. The cells are 
arranged in a 75-by-75 array representing a cortical sheet. 
Initially the activity of the cells has no spatial structure, but 
with time the initial symmetry is broken and patches of 
increased firing emerge arranged in a triangular 
(rhomboidal) structure. Eventually this pattern stabilizes. 
Colours represent firing rates of the neurons in the array: 
warm colours represent high activity, progressively cool 
colours represent progressively lower activity.
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Accommodation
When stimulated by a constant 
synaptic current, many 
neurons exhibit a firing rate 
response that is relatively high 
at stimulus onset, but soon 
settles to a lower level. This 
neural accommodation is often 
mediated by slow-opening K+ 
channels, which reduce 
membrane resistance and 
thereby reduce membrane 
depolarization for a given 
current.

incorporates an activity-dependent shift from LTD to 
LTP 

98,99, and Hebbian associative LTP.
The proposal is simple. First, imposing realistic neural 

dynamics such as accommodation and/or synaptic noise 
can be shown, in principle, to cause the grid structure 
in the Turing layer to drift randomly while preserving 
grid orientation. So, over a period of time, the Turing 
layer grid would visit all possible grid phases. Second, 
random connections from the Turing layer to all of the 
modules, if subject to a suitable competitive plasticity 
mechanism, would generate cells that are selective for 
specific phases of the Turing grid. However, there would 
not be any topographic organization in the modules 
— neighbouring cells would not have correlated phases, 

which is consistent with what is observed in the MEC 
where neighbouring cells do not, in general, have cor-
related grid phases, but all cells in a column have the 
same grid orientation. The same principle is widely used 
in models for the activity-dependent development of fea-
ture selectivity in sensory systems100,101. Finally, Hebbian 
associative plasticity within a module will generate a syn-
aptic matrix in which neurons tuned to similar Turing 
layer grid phases will be strongly coupled, whereas cells 
with opposite phase tuning will be weakly coupled. As 
illustrated in FIG. 8, such a mechanism would generate, 
within each module, the toroidal synaptic matrix that 
could underlie grid cell behaviour in the adult. We 
assume that, once the task of self-organizing the synaptic 

Figure 8 | Developmental model for an anatomically 
non-topographic MEC path integrator. a | During 
development, topographically arranged firing rate patterns 
form in the Turing (teaching) layer owing to spontaneous 
symmetry breaking in a network with short-range 
excitatory and long-range inhibitory connections (wTT; 
‘Mexican hat’ connectivity, see FIG 7). Owing to neuronal 
adaptive properties and noise, the firing rate patterns will 
drift, exploring all spatial phases but maintaining a 
constant orientation. The Turing layer projects to multiple 
modules in the developing path integrator (wTP) and the 
hidden layer (wTH), which might correspond to columns in 
the medial entorhinal cortex (MEC). One dorsal and one 
ventral module are illustrated here. Note that, although for 
convenience the cells in the path integrator and hidden 
layer are illustrated as topographic sheets, these cells are 
assumed to be randomly arranged in the brain. Excitatory 
connections are formed by Hebbian plasticity (wPP). 
Competitive synaptic plasticity in wTP and possibly wTH 
result in different cells within a module developing 
selectivity for different Turing layer grid phases. Hebbian 
synaptic plasticity within each module results in cells with 
nearby grid phase preferences becoming selectively 
coupled. Therefore, the resulting synaptic matrix (wPP) will 
have periodic boundaries (FIG. 4b), even though the cells 
themselves are arranged at random. b | A three-
dimensional linear embedding139 illustrating the toroidal 
periodic topology of the synaptic matrix (wPP) for ideal, 
hand-wired connections implementing periodic boundary 
conditions of the path integrator. Numerical simulations of 
the model allowed the synaptic matrix wPP to form as a 
consequence of drifting patterns in the Turing layer: prior 
to learning no topological structure was present in wPP 

(middle panel), whereas after learning the synaptic matrix 
assumes a toroidal structure implementing the periodic 
boundary conditions (right panel). c | Once the self-
organization is complete, we assume that the cells of the 
Turing layer or their connections are eliminated, leaving 
the adult form. The variation in spatial wavelength during 
path integration of the grid fields expressed by cells in each 
module is determined by the gain of the velocity input to 
the hidden layer, which can be accomplished by varying 
either the number of velocity tuned inputs or the relative 
strength of their connections. A large gain will drive the 
activity bump relatively fast, resulting in grid patterns with 
a small spatial wavelength (dorsal). A lower gain moves the 
bump more slowly, resulting in grid patterns with a larger 
spatial wavelength (ventral). Finally, the activity from 
multiple modules in that path integrator is combined in the 
hippocampus. This results in spatially unambiguous firing 
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matrix within the MEC modules is accomplished, the 
Turing layer cells would either undergo reallocation to 
another function by rewiring, or perhaps be removed.

Several features of the adult and developing brain 
support the proposals made above. The first is the abun-
dance of evidence for modular or columnar organiza-
tion in the cortex102. In particular, the entorhinal cortex 
has a clearly modular anatomical organization in the 
adult, although it is perhaps more obvious in the LEC 
than the MEC. Layer II is separated into alternating 
patches that are interleaved by bundles of dendrites 
and axons from cells in the deeper layers, particularly 
in layers III and V (REFS 103,104). The diameter of the 
dendritic and axonal bundles in the entorhinal cortex is 
roughly 400–500 µm. Such anatomical modules could 
possibly correspond to the postulated functional mod-
ules. Second, during early postnatal development, the 
neocortex undergoes a complex constellation of sponta-
neous slow oscillations of correlated activity, which are 
implicated in the develop ment of cortical connectivity 
patterns105–107. In some cases, waves of excitation can 
propagate at speeds of up to several hundred microns 
per second108–111. In other cases, distinct columns or 
‘domains’ of increased intracellular free Ca2+ appear 
transiently. Waves of excitation are particularly evident 
in slices of postnatal entorhinal cortex. Third, there is 
abundant evidence for patterns of connectivity and/or 
actual neural populations that are expressed early 
in development and that disappear in the adult. For 
example, early in development cortical layer I contains 
an oscillatory network involving Cajal–Retzius cells, 
which largely disappear in the adult109.

Conclusions and problems for further study
The discovery of grid cells and conjunctive ‘grid × head 
direction’ cells, and their suggested relationship to exist-
ing models for path integration, can be regarded as a suc-
cess for the combination, during the past three decades, 
of concepts derived from theoretical and computational 
studies with empirical neurophysiology. However, there 
remain many unanswered questions. The continuous 
attractor model discussed here is but one of a class of 
similar models with different specific implementations 
and sometimes different predictions. For example, similar 
dynamics arise if the recurrent symmetrical connections 
leading to the attractor dynamics and the asymmetrical 
connections leading to translation of the activity bump 
are all contained within the same physical layer23,51. This 
might be a technical detail, but it could lead to different 
ideas about the roles of individual layers and cell classes. 
Which of these detailed models, if any, will prove correct 
remains for future neurophysiological and anatomical 
studies to determine. Unfortunately, neuroanatomical 
understanding of the details of the wiring diagram of 
the entorhinal area have lagged considerably behind 
the hippocampus proper, for the reason that, until now, 
there has been no behavioural correlate of MEC cells as 
compelling as the hippocampal place cell phenomenon 
to drive new hypotheses and studies. We expect that the 
discovery of grid and conjunctive cells in the MEC will 
mark a vital turning point in the focus of anatomical 

investigation. An example of the potential discoveries to 
be made from further study of this network is the recent 
evidence that neighbouring stellate cells in layer II of the 
MEC could have limited excitatory interconnections50. 
This might place the attractor dynamics in the deeper 
layers and leave layer II with a computational task to 
accomplish before sending its output to the CA3 and 
the dentate gyrus.

Furthermore, in this review we have ignored the 
rich behaviour of hippocampal and entorhinal corti-
cal neurons in the frequency domain. In behaving 
rats, cellular firing in this system is subject to complex 
interactions with local field oscillations at the theta and 
gamma frequencies, which arise from both intrinsic 
cellular mechanisms and system-level interactions112. 
The striking phenomenon of ‘phase precession’113–115 in 
hippocampal neurons is a case in point. Hippocampal 
place cells exhibit a systematic, 360 degree phase retard-
ation in their firing relative to the local theta field as a 
rat traverses the place field. They continue to exhibit 
a single cycle of this phase shift after either manipula-
tion of place field size by changing self-motion cues60 or 
exper ience-dependent place field expansion due to 
LTP-like synaptic plasticity during repeated route 
following68,69,116. Phase precession in the hippocam-
pus has been suggested as a possible mechanism for 
compressing sequences of neural activity into a nar-
row time window comparable to the time constant of 
the NMDA (N-methyl-d-aspartate) receptor, so that 
asymmetrical Hebbian synaptic plasticity can record 
the sequence or route113. However, available data sug-
gest that phase precession in area CA1 can be observed 
from the first time a rat enters the route117, making it 
difficult to understand how the hippocampus can 
compress a sequence that it has not yet experienced. 
Skaggs et al.113 suggested that phase precession 
might originate in the entorhinal cortex, and this 
speculation has recently been confirmed for layer II 
MEC grid cells118. Because, according to the current 
model, the interaction of periodic MEC grids at various 
scales can give rise to a virtually limitless sequence of 
hippocampal place fields, phase precession in the MEC 
could indeed be used to generate the phenomenon in 
the hippocampus, and so possibly provide the basis for 
sequence encoding there.

Finally, a crucial outstanding question, in terms of 
understanding the role of the hippocampus in either 
navigation or memory, concerns the form of the output 
code of the hippocampal formation and how this out-
put is used by the widespread cortical and subcortical 
regions that receive it. Outputs from the hippocampus 
back to the rest of the cortex arise principally from 
the deep layers of the entorhinal cortex and from the 
subiculum46. These outputs are thought to have a vital 
role in providing a contextual tag for consolidation of 
episodic memories stored in distributed neocortical 
modules119–125. It is now known that the superficial neo-
cortical layers that receive the bulk of entorhinal output 
tend to show much more spatial context-dependent 
encoding activity than the deeper layers126. In addi-
tion, evidence indicates that during sleep and quiet 
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wakefulness, the hippocampus plays back repeated 
short sequences of activity patterns generated during 
preceding behaviour127. Given that area CA1 could 
contain convolved information about the location and 
content of a temporally extended experience11, one might 
speculate that the two output structures, the subiculum 
and deep layers of the entorhinal cortex, might parse the 
data projected to the neocortex into distinct non-spatial 

and spatial components respectively. Clearly much 
remains to be learned about the hippocampal forma-
tion and its interaction with the rest of the brain, but our 
current understanding of it underscores the growing 
paradigm shift in the neurosciences away from think-
ing about neural coding as being driven primarily by 
bottom-up, sensory inputs, but rather as a reflection of 
rich and complex internal dynamics.
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