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Abstract. Probabilistic robot mapping techniques can produce high resolution, 
accurate maps of large indoor and outdoor environments. However, much less 
progress has been made towards robots using these maps to perform useful 
functions such as efficient navigation. This paper describes a pragmatic 
approach to mapping system development that considers not only the map but 
also the navigation functionality that the map must provide. We pursue this 
approach within a bio-inspired mapping context, and use results from robot 
experiments in indoor and outdoor environments to demonstrate its validity. 
The research attempts to stimulate new research directions in the field of robot 
mapping with a proposal for a new approach that has the potential to lead to 
more complete mapping and navigation systems.  

1   Introduction 

The spatial mapping problem has been the subject of much research in the robotics 
field, resulting in the existence of several well-established mapping algorithms [1]. 
Sensor and environment uncertainty has caused most robotic mapping and navigation 
methods to converge to probabilistic techniques. The key strength of probabilistic 
techniques is their ability to deal with uncertainty and ambiguity in a robot’s sensors 
and environment. Any technique that has some means of handling the uncertainties 
faced by a mobile robot has an immense advantage over techniques that do not. 
Probabilistic techniques allow a robot to appropriately use sensory measurements 
based on their modeled uncertainties. Ambiguous features or landmarks in the 
environment become useful (albeit less useful than unique features) rather than 
becoming failure points for the mapping algorithm. 

Under appropriate conditions some of these systems can solve the core SLAM 
(Simultaneous Localization And Mapping) problem in large, real world, static 
environments. The world representations produced by these systems generally take 
the form of occupancy grids, or landmark maps. However, while a high resolution 
(often as small as 10 mm) occupancy grid can faithfully represent the physical 
structure of an environment, it is not necessarily the most ‘usable’ representation for 
general navigation tasks. For environments of any significant size, the amount of data 
stored in such a map becomes quite large, and requires significant processing before it 
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can be used by a robot to perform tasks such as goal navigation. The limitations of 
such representations are perhaps revealed by the imbalance between a relative 
abundance of competent mapping algorithms [2–8] and a scarcity of robotic systems 
that use these maps to perform navigation and other useful tasks [9–11]. 

This problem has been partially addressed by other mapping techniques that 
produce topological or hybrid metric-topological representations. Techniques such as 
the Hybrid Spatial Semantic Hierarchy [12,13] produce maps that are perhaps more 
suited to route planning and navigation than purely grid-based maps. By embedding 
navigational concepts into the representation, such as the locations of exits from a 
room, the maps produced are already somewhat ‘navigation-ready’ so to speak. A 
robot need only pick which exit to go through in order to progress towards a goal, 
rather than process an occupancy grid map to extract possible exit locations.  

The concept of map usage shaping the nature of the map applies not only in spatial 
mapping, but also conceptual and biological mapping domains. In the conceptual 
domain the structure and form of conceptual maps created by humans is known to 
change significantly depending on motivation and context [14]. In rodents, place cell 
firing varies depending on the behavior of the rat at the time [15,16]. Reward location, 
movement speed, movement direction, and turning angle can all affect place cell firing 
and even cause remapping of place fields [15]. Furthermore, the place cell maps can 
gradually change to provide the rat with efficient trajectories between reward sites [17].  

Animals are, in fact, excellent examples of the co-evolution of mapping and map 
usage processes. Foraging honeybees are known as central-place foragers because 
they have a common point to start and finish their foraging trips. Their ‘maps’ must 
provide them with the ability to return to their hive after foraging, a journey typically 
of two or three kilometers, but stretching as far as 13.5 kilometers [18]. When 
returning to the nest from a foraging location, the desert ant Cataglyphis fortis uses its 
home vector, which is calculated during the outbound trip using weighted angular 
averaging [19]. Primates possess spatial view cells, that allow them to remember 
where an object was last seen, even if it is currently obscured, a very useful ability in 
their natural environment. Each animal or insect represents the environment in a 
manner which suits the task they must perform in it. 

This paper presents a pragmatic bio-inspired approach to developing a robot 
mapping system that considers both the map and the navigation functionality that the 
map must provide. The research occurred as part of the RatSLAM project, the aim of 
which was to use models of rodent hippocampus to produce a robot mapping and 
navigation system [20–23]. By considering the usability of the maps in navigation 
tasks, the project developed a robot mapping system with significantly different 
characteristics to those developed with only the SLAM problem in mind. 
Furthermore, the bio-inspired approach incorporated concepts from three separate 
mapping fields; robotic mapping, mapping in nature, and computational models of 
biological mapping systems.  

The hypothesis in this paper is that mapping methods for an autonomous robot 
must necessarily develop in parallel with mechanisms for map exploitation. Only with 
awareness of the entire mapping and navigation problem will researchers be able to 
develop autonomous mobile robot systems that can be deployed across all 
environments and situations. Since biological systems fulfill both mapping and 
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navigational needs of animals and insects, this hypothesis is pursued from a bio-
inspired perspective. We present results demonstrating the capability of a bio-inspired 
robotic system developed using the proposed approach.  

The paper is organized as follows: We start by performing a comparative review of 
what is known about the mapping and navigation processes in nature and the state of 
the art robotic mapping techniques. The characteristics of mapping systems in both 
areas are discussed with respect to solving the entire mapping and navigation 
problem, rather than just creating a spatial map, resulting in the proposed approach to 
developing robotic mapping systems. We then describe an example of the pragmatic 
use and extension of models of biological systems, and the increase in mapping 
performance that can be achieved by doing so. The parallel development of mapping 
and navigation processes is illustrated within the context of the RatSLAM system, and 
results are presented demonstrating the resultant system’s effectiveness in indoor and 
outdoor environments. The paper concludes with a discussion of the significant issues 
raised by the study. 

2   Mapping and Navigation in Nature and Robots 

There are many forces driving the diversity that is apparent when examining 
biological and robot mapping and navigation systems. In nature, creatures and their 
navigation systems have evolved to suit their environments and their own physical 
and sensory characteristics. In the natural world, the range of body types, sensory 
equipment, environments, and lifestyles has produced a myriad of solutions to the 
problems facing a creature that needs to move around effectively in its environment. 
Likewise in the research labs of robotics researchers and the domestic home or 
industrial workplace, mapping and navigation systems have developed in ways to suit 
the environments and the sensors available, but less so the purpose of the robot. 

Given this diversity it seems a challenging task to identify one research direction 
that is most likely to yield a complete robot mapping and navigation system. The 
specific mechanisms, representations, and context of each system differ so greatly that 
direct comparison is not possible. Fortunately, there are a number of fundamental 
mapping and navigation issues that are common to all these systems. Through 
consideration of these issues for all these systems it is possible to define goals for 
future research in this field, and in the process identify one means by which these 
goals may be met. 

The following sections compare and contrast biological systems and models of 
biological systems with robotic mapping algorithms in a range of areas, with a focus 
in the biological area on rodents. The comparison highlights the shortcomings of both 
types of system as well as their complementary characteristics. The shortcomings are 
particularly relevant when considering where future research into the mapping and 
navigation problem should concentrate. After a discussion of possible future research 
approaches, the final section presents a proposed approach for developing complete 
robot navigation systems. 
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2.1   Robustness Versus Accuracy 

One of the most significant differences between biological mapping systems and 
probabilistic methods is the world representations that they use. Many probabilistic 
systems incorporate high resolution occupancy grid maps, such as those shown in 
Figure 1. In work by Grisetti, Stachniss et al. [7] in the Freiburg campus environment, 
the occupancy grid contained 625 million squares. By contrast the place cells found in 
the rodent hippocampus appear quite coarse, and likely do not encode information to 
such a precise degree. The place cells certainly do not represent occupancy, but 
instead represent the rodent’s location in space. The place cells give localization, but 
the map itself is widely distributed in other regions. 

 

Fig. 1. High resolution grid map of the University of Freiburg campus, measuring 250 × 250 m, 
with a grid resolution of 0.01 m. The map was generated using the extended Rao-Blackwellized 
particle filter method [7]. Adapted from Figure 4 of [7] and reprinted with permission of IEEE. 
© 2005 IEEE. 

Furthermore many probabilistic based mapping methods attempt to produce a 
Cartesian map with direct spatial correspondence to the physical environment. A 2.5 
meter wide, 16.7 meter long corridor should appear as an identically sized region of 
free space in an occupancy grid map, with occupied cells along its edges. Biological 
systems relax the requirement that there be direct Cartesian correspondence between a 
map and the environment. In rodents, place field size and shape can vary significantly 
depending on the type of environment. For instance, the addition of straight barriers to 
an environment resulted in the destruction of the place fields located where the barrier 
was added [24]. Barriers can also cause an apparent remapping from the affected 
place cells into new place cells. Many animals appear to rely more on robust coping 
strategies than precise representations of their world. One such example is the desert 
ant; it navigates back to the general vicinity of its nest and then uses a systematic 
search procedure to find it [19].  
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2.2   Map Friendliness Versus Map Usability 

Maps that are highly accurate, precise, and Cartesian have a number of advantages 
and disadvantages. One immediate observation is that they are ‘human-friendly’. 
Looking at the map in Figure 1, a human can immediately make a number of high 
level observations about the environment – there are multiple loops in the 
environment, several buildings, large open spaces, and so on. It is easy for a human to 
relate parts of the map back to physical places in the environment, and also to 
compare the map and environment on a global scale.  

In contrast, it is hard to present an equivalent map for any animal or insect. Place 
fields observed from brain readings in the rodent hippocampus convey only the 
observed locations in the environment to which a single place cell responds. There is 
no definitive method of combining the environmental features that a rodent perceives 
with the place fields of each place cell to produce a single ‘conventional’ map. An 
occupancy grid map could be created by using place cell activity and externally 
determined ranges to obstacles. It is unlikely however such a map would be 
representative of the rodent’s actual mapping process. The extent to which rats rely on 
“range-to-obstacle” concepts is unknown, as is whether rats use a linear geometric 
scale for ordering the map. 

 

Fig. 2. Sample combined place cell firing rates and area occupancy maps. (a) Time spent by rat 
at each location in the circular environment, darker squares indicate longer occupancy times. 
(b) Spike map showing firing rate of one complex-spike cell over the environment, darker 
squares indicate a higher firing rate. (c) The firing rate array is obtained by dividing the spike 
map by the time spent in each location, to reveal a single peak of activity. 

The maps shown in Figure 1 are human-friendly in that a human can easily 
understand them. A human could use these maps to navigate efficiently to various 
locations. However, in doing so a number of high level classification and planning 
processes would be used. The narrow straight sections of free space in Figure 1 might 
immediately be classified as pathways, and the large obstacle shapes as buildings. A 
human might consciously trace along the paths shown in the map, before choosing 
and following the shortest one. The overall process would be very different to the 
subconscious navigation that occurs as a person drives to and from work, walks 
around an office building, or moves around in their house and garden.  

This distinction is an important one – the form of most maps created by 
probabilistic methods is governed by the underlying mathematical algorithms, or 
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human requirements that the map be in a form suitable for performance analysis. In 
contrast, biological mapping systems have evolved to produce representations that are 
suited to the navigation tasks animals must perform every day.  

2.3   Sensory Differences 

Animals and robot platforms have different sensory equipment and movement 
capabilities. Probabilistic methods exploit the particular characteristics of the sensors 
they use. Biological sensors have evolved for important activities such as finding food 
and mating, with biological navigation systems evolving to suit the sensors and 
activities. Models of biological systems emulate the biological mapping and 
navigation mechanisms while using robotic sensors. Some researchers have applied 
compensatory algorithms to the output of the robotic sensors in order to more closely 
emulate the biological systems. For instance, the use of certain color spaces 
minimizes the effect of illumination differences [25], a task that many biological 
vision sensors achieve effortlessly. Other research approaches have involved 
plausibly modifying the models so that they take advantage of the differences in 
sensing equipment. For instance, instead of using a camera, a set of sonar sensors can 
be used to detect bearings and ranges to environment cues [26]. 

In the search for a biologically inspired mapping and navigation system, there are 
two ways to approach this problem of sensory differences. One approach is based on 
the fact that biological systems manage to perform quite well despite the specific 
limitations of some of their sensors. Although biological vision sensors can be quite 
advanced, there is a lack of accurate range sensing equipment (with the exception of 
such animals as bats). It seems reasonable that given the rapidly increasing 
computational power of modern computers, it should eventually be possible to create 
an artificial system equipped only with biologically faithful sensors that can match the 
navigation performance of animals. This approach dictates the meticulous emulation 
of the sensory equipment and theorized navigation strategies of animals even if this 
means purposefully handicapping certain aspects of the systems. 

The other approach involves trying to exploit the superior characteristics of some 
robotic sensors by extending the mapping and navigation models. Given the current 
inability to match the capabilities of many biological sensors, it also seems reasonable 
that the superior characteristics of some robotic sensors be exploited to make up for 
other shortcomings in the models. In this approach the focus is on creating functional 
robotic systems, rather than faithful replication of proposed biological mechanisms. 
Biological mapping and navigation mechanisms are modified to accommodate the 
different characteristics of robot sensors. This approach has received relatively little 
attention, unlike the fields focusing on biologically inspired mechanical robot design. 
There has been only a limited amount of research into developing practical 
biologically inspired robot mapping and navigation systems [27]. 

2.4   Capability in Real World Environments 

Biological navigation systems perform well enough to allow the millions of species of 
animals using them to function and survive every day. These systems combine 
advanced sensing, clever mapping and robust navigation mechanisms. There is a 
reasonable amount of knowledge about the capabilities of their sensors, and 
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experiments have gathered a significant amount of knowledge about the navigation 
capabilities of these animals. Many theories have been devised to account for their 
capabilities, but in some areas research is only starting to scratch the surface. 
However, there is no question that animals can navigate well in a wide range of 
complex, dynamic environments. 

In most areas, the state of the art in robotic mapping and navigation systems has 
not yet come close to matching the abilities of animals. In specific subsets of the 
problem and under certain conditions, these systems may outperform their biological 
counterparts, but it is with the sacrifice of robustness and flexibility, and is usually 
accompanied by a host of assumptions and the use of advanced sensing equipment. 
Nevertheless the best methods can produce impressive maps of large indoor and 
outdoor environments [6, 7, 10]. Most of the major mapping and navigation problems, 
such as closing the loop or coping with ambiguity, can be solved by one or another of 
these methods with appropriate assumptions. 

In contrast to the robotic systems, computational models of the rodent 
hippocampus have only been used in simulation or on robots in small structured 
environments, and are yet to solve many of the major mapping and navigation 
problems. The small size and limited complexity of these environments reduces the 
major mapping and navigation challenges such as closing the loop, dealing with 
extended sensory ambiguity, and navigating to goals to trivial or non-existent 
problems. None of these models have been tested in or successfully applied to the 
large unmodified environments in which one might reasonably expect an autonomous 
mobile robot to function, such as an office floor or an outdoor set of pathways. 

Biologically inspired models are partly limited because the goal for much of the 
research is to test navigational theories for a particular animal, rather than to produce 
a fully functional robot system [28]. The uncertainty about biological systems and 
subsequent speculation has produced models that may only be partially faithful to the 
biology, with resulting navigation performance that is inferior to that of the animal. In 
pursuing the development of a biologically plausible model, it is unlikely that a 
researcher will stumble upon a better performing model by chance – current 
biological systems are the product of a long sequence of evolution.  

2.5   Proposed Approach 

Given the current state of robotic and biological mapping and navigation systems, 
several conclusions can be drawn. It is unlikely that research in the near future will 
create a perfect model of the higher level mapping and navigation systems, such as 
those of a rodent, primate, or human. Animal brains are only partially understood; 
researchers create theories from the readings of a few dozen electrodes, but the 
theories are far from being comprehensively proven. Even though models may 
recreate some aspects of animal navigation behavior, there can be no real confidence 
that the underlying mechanisms driving the artificial system are the same as those in 
the real animal. Furthermore, even biological systems do not necessarily possess all 
the capabilities autonomous robots require to function in the challenging 
environments earmarked for their deployment.  

Conventional robot mapping and navigation research is also facing many 
challenges. The most impressive recent demonstrations of mobile robotics have been 
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largely made possible by good engineering and incremental improvements in 
algorithms, sensors, and computational power. The Defence Advanced Research 
Projects Agency (DARPA) Grand Challenge of 2005 is one prime example of this; 
while the onboard navigation and mapping systems were state of the art, it was only 
with an impressive array of expensive, high precision sensing equipment that this 
specific task could be solved [29, 30]. Some may argue that the continual 
improvement in sensors and computer power may eventually lead to navigation 
systems that surpass all the abilities of one of the most adept of navigators – humans. 
However, it is perhaps more likely that this milestone will be achieved through 
fundamental methodology changes, rather than steady computational and sensory 
improvements, although such changes will definitely facilitate the process. 

So, where to look for a solution to the mapping and navigation problem? This 
paper proposes that an eventual solution may be found using a biologically inspired 
yet completely pragmatic approach, which considers both mapping and navigational 
requirements. Previous research has investigated bio-inspired robotic mapping 
methods, although without concurrent consideration of the how the map would be 
used [31]. However, research on pragmatic models of biological systems to date has 
still had a heavy emphasis on biological plausibility and has had limited practical 
success. No research has developed or tested a biologically inspired model under the 
same conditions and criteria as conventional robot mapping and navigation systems. 

For example, the biologically inspired model developed by Arleo [32] can perform 
localization, mapping and goal recall, but only in a very small artificial arena, with 
continuous visual input from artificial cues or a distal cue source. Other less 
biologically faithful models have displayed limited re-localization ability in robot 
experiments in an artificial arena with visual cues, and have been able to navigate to 
goals in simple T and two arm mazes in simulation [31]. These approaches have also 
been fundamentally limited by the rodents on which they are based. The capabilities 
of rodent mapping and navigation systems do not necessarily fulfill all the desired 
capabilities of an autonomous mobile robot. If a biologically inspired system is ever 
to compete with conventional probabilistic methods, it must also contain solutions to 
the navigational shortcomings of animals. The approach presented in this paper 
therefore also sought to investigate whether models of the rodent hippocampus can 
serve as a basis for a complete robot mapping and navigation system.  

3   Pragmatic Biological Modeling 

To evaluate the potential of current hippocampal models as the basis for a robot 
navigation system, a model was developed based on the structure shown in Figure 3. 
Experiments were run on a Pioneer 2DXe mobile robot from Mobile Robots Inc 
(formerly ActivMedia Robotics). Ideothetic information for path integration is 
derived from the robot’s wheel encoders. Allothetic information for generating the 
local view is derived from camera images. The testing environment was a flat two by 
two meter area of a laboratory floor. Colored cylinders were used as visual cues for 
the robot and were placed just outside the arena in various configurations. 
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Fig. 3. Overall structure of the hippocampal model 

The initial study was based on well known models of the hippocampus [32–34] as 
shown in Figure 3. The head-direction cells were implemented using a competitive 
attractor network (CAN) made up of neural units or ‘cells’ roughly corresponding to 
biological head-direction cells. Each cell is tuned to be maximally active when the 
robot’s orientation matches the cell’s preferred direction. The cell’s activity level 
reduces as the robot orientation rotates away from this preferred direction. The cell 
arrangement reflects their associated robot orientations – nearby cells encode similar 
robot orientations. When the ensemble activity of the head-direction cells is viewed as 
a graph, one can see a ‘packet of activity’ that resembles a Gaussian curve (see Figure 
4 for examples). The center of this ‘activity packet’ represents the current perceived 
orientation of the robot.  

The place cells were modeled as a two-dimensional CAN, with each cell tuned to 
be maximally active when the robot is at a specific location. A coarse representation 
is used, with the path integration system tuned so that each place cell represents a 
physical area of approximately 250 mm × 250 mm. The cells are arranged in a two-
dimensional matrix with full excitatory interconnectivity between all cells. Further 
details on the implementation can be found in [33], and is similar to the extended 
implementation described in later sections. 

3.1   Experimental Performance 

In rotation-only experiments, the robot was able to maintain an accurate estimate of 
its orientation. However, when the robot moved around the environment, the 
network’s tracking ability proved to be unstable.  Over the period of an hour the robot 
became lost and its perceived location moved well outside its two by two meter arena. 

Closer examination revealed that the place cells and head-direction cells developed 
multiple firing fields in situations of ambiguous sensory input. While activity in the 
head-direction cells shifted to represent appropriate changes in the robot’s orientation, 
activity in the place cells did not shift appropriately to represent robot translation 
(Figure 4). 
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Fig. 4. Place and head-direction cell firing fields under unique and ambiguous conditions. 
Crosses show the correct location hypotheses (a) Correct update of place cell activity under a 
unique orientation hypothesis. (b) With opposing orientation hypotheses, place cell firing 
smears, and does not shift to represent either possible location estimate. (c) Place cell activity 
shifts in the net (and consequently incorrect) direction of two orientation hypotheses varying by 
90 degrees. 

The underlying cause of the failures was the separation of pose (the conjunction of 
location and orientation) into separate location and orientation representations in the 
place cells and head-direction cells. Without a strong coupling between the two cell 
types, allothetic input can incompletely correct errors accumulated during exploration 
leading to corruption in the associative memory. Most significantly, the separation of 
the state representation removes the ability to correctly update multiple estimates of 
pose in perceptually ambiguous situations. Because place cells have no directional 
attributes, any path integration process, regardless of the specific mechanism, must 
obtain its orientation information from activity in the head-direction cells. However, 
each location estimate can only be updated by its one-to-many association with all 
orientation estimates, rather than updated only by the orientation estimate pertinent to 
the particular location hypothesis. Consequently, location estimates rapidly become 
incorrect. The correct robot location estimate can only be reinstated through strong 
unique visual input. 

Separate representations of robot orientation and spatial location are inherently 
unsuitable for mapping and navigation in large, ambiguous environments, as 
demonstrated by the work presented in this section. The following section describes 
the implementation of an extended hippocampal model known as RatSLAM, which 
combines the concept of head-direction and place cells to form a new type of cell 
known as a pose cell. 
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3.2   A Model of Spatial Pose 

To form a population of pose cells, the competitive attractor network structures that 
were used to model head-direction and place cells were combined to form a three-
dimensional structure (Figure 5). The pose cells are arranged in an )',','( θyx  pattern, 
allowing the robot to simultaneously represent multiple pose estimates in x', y', and θ'. 
Primed co-ordinate variables are used because although the correspondence between 
cells and physical co-ordinates is initially Cartesian, this relationship can become 
discontinuous and non-linear as the system learns the environment. For example, in 
indoor experiments, each pose cell initially fires maximally when the robot is in a 
0.25 × 0.25 meter area and within a 10 degree band of orientation. However as an 
experiment progresses, the pose volume each pose cell corresponds to can grow, 
shrink, warp, or even disappear under the influence of visual information. 

 

Fig. 5. The local view and pose cell structures. The local view encodes visual information about 
the environment. The pose cells represent the robot’s pose. Co-activated local view and pose 
cells form associative links. A familiar visual scene activates a local view cell which in turn 
injects activity into the pose cells associated with it. Re-localization occurs when the activity 
packet caused by visual input becomes dominant. 

The advantage of a unified pose representation is that each cell encodes its own 
preferred orientation. This allows multiple hypotheses of the robot’s pose to 
propagate in different directions, unlike the more conventional head-direction – place 
cell model, and enables the mapping of large, ambiguous indoor and outdoor 
environments (Figure 7c, d)  [21, 35].  

4   Contextual Mapping 

Conventional robot mapping methods typically produce either occupancy grid maps 
[7] or landmark-based maps [36]. Such maps are appealing from a mathematical 
perspective because they facilitate the use of probabilistic mapping algorithms. 
However, such maps are context-less, and store no information regarding the 
environment that can be used directly by the robot. For example, while an occupancy 
grid map stores the location of free space and obstacles in the environment, the map 
does not directly tell the robot about the speeds at which it can traverse different areas 
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 of the environment. A cluttered area might require slow movement with much 
turning, while a long straight corridor offers the potential for a high speed movement. 
The occupancy map could perhaps be processed using a ‘clutter’ metric in order to 
yield this information, but this is a complex and perhaps unnecessary step. 

Contextual mapping involves enriching the spatial representation of an 
environment with additional information relevant to the potential uses of the 
representation. For example, temporal or speed data provides information about the 
rate at which different areas of the environment can be traversed, which can be used 
by a robot to plan the quickest route to a goal. Behavioral data provides information 
about the appropriate movement behaviors required to move between different places 
in the environment, which a robot can use to achieve improved movement through the 
environment. Transition success rate data provides information about how easy it is to 
cross different areas in the environment, which a robot can use to decide between 
competing routes to a goal. This section presents a contextual approach to mapping 
the environment. The map use requirements were that the robot be able to rapidly 
explore and map its environment, plan and execute the quickest routes to goals, and 
adapt its map and goal navigation to simple changes in the environment. 

 

Fig. 6. (a) Experience map co-ordinate space. An experience is associated with certain pose and 
local view cells, but exists within the experience map's own (x, y, θ) co-ordinate space. (b) A 
transition between two experiences. Shaded circles and bold arrows show the actual pose of the 
experiences. ijd  is the odometric distance between the two experiences. (c) An example of the 

behavioral and temporal information. The numbered circles represent experiences, and CF, 
LWF, and RWF are movement behaviors: CF – Centerline Following; LWF – Left Wall 
Following; RWF – Right Wall Following. 
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4.1   Experience Mapping 

The experience mapping algorithm was developed to create a contextual 
representation of the environment containing not only a spatial map, but also 
movement, behavioral, and temporal information relevant to the robot’s motion and 
higher level behaviors such as goal navigation.  

 

Fig. 7. (a-b) Indoor and outdoor environments. The robot’s paths are shown by the thick line. In 
the outdoor environment the robot started at S and finished at F. An initial loop of the inner 
loop SABFS was followed by a clockwise traverse of the outer loop SACABDBFS and then a 
counter-clockwise traverse of the same outer loop. (c-d) The trajectory of the most strongly 
activated pose cell in )','( yx  space, with wrapping in both directions. The thin lines indicate re-

localization jumps where the RatSLAM system closed the loop. Each grid square represents 
4 × 4 pose cells in the )','( yx  plane. (e-f) Experience maps. 

Activity in the pose cells and local view cells drives the creation of experiences. 
Experiences are represented by nodes in (x,y,θ) space connected by links representing 
transitions between experiences. Each experience represents a snapshot of the activity 
within the pose cells and local view cells at a certain time, and in effect represents a 
specific spatial and visual robot experience (see Figure 6a).   

As the robot moves around the environment, the experience mapping algorithm 
also learns experience transitions, which are links between experience nodes. 
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Transitions store information about the physical movement of the robot between one 
experience and another, the movement behavior used during the transition, the time 
duration of the transition, and the traversability of the transition (see Figure 6b, c). 
This information enables a robot to perform rapid exploration, map correction, route 
planning and execution, and adaptation to environment change – all with minimal 
computation [22, 23, 37]. 

5   Map Exploitation 

5.1   Exploration 

In a novel environment, an animal or robot must explore in order to acquire 
information about its surroundings. In classical robotics, exploration is often achieved 
through greedy frontier-based techniques, where the robot heads towards the nearest 
unknown area of the environment, or the unknown area which offers the greatest 
potential information gain [38, 39]. These techniques process occupancy or coverage 
maps to identify borders of unknown areas in the environment.  

By encoding behaviors into the spatial experience map, the RatSLAM system is 
able to choose movement behaviors that have not yet been used at behavior 
intersections in the environment, where more than one movement is possible, with 
minimal map processing (Figure 8). Past behavior usage can be detected using the 
experience map. A recursive tree search function is used to find routes from the 
currently active experience through the experience map using only transitions of a 
specific behavior type. If a sufficiently long continuous path is found through the 
experience map for a certain behavior, that behavior is tagged as having already been 
followed from the current environment location. During exploration the robot 
attempts to use previously unused movement behaviors to try to experience new 
routes through the environment.  

 

Fig. 8. The robot’s local movement at an intersection during an 80 minute experiment. The 
labels indicate the order in which the paths were traversed. 
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5.2   Route Planning and Execution 

The experience maps provide the spatial, temporal, and behavioral information used 
to perform goal directed navigation. Temporal information allows the creation of a 
temporal map, with gradient climbing techniques used to find the fastest (in the 
robot’s experience) route to the goal. Once a route has been found, the robot uses 
spatial and behavioral information stored in the experience links to navigate to the 
goal. If the context was different – for instance, if the robot was required to find the 
straightest routes to the goal, that information could be added to the map.  

By creating maps which are both spatial and navigational, a robot is easily able to 
use them to navigate to goals. The navigation capabilities of the system were tested 
over a sequence of 12 goal navigation trials in the environment shown in Figure 7a. 
Figure 9 shows the temporal maps, planned and executed routes to six goals. The 
robot successfully navigated to all twelve goals, demonstrating the usability of the 
spatial and navigational experience maps.  

 

Fig. 9. Temporal maps, planned and actual routes to the goals for six of the twelve trials. 
Temporal maps and planned routes are shown in the first and third columns (a, c). The actual 
routes executed by the robot are shown in the second and fourth column (b, d). Five of the 
executed routes were near optimal, with major errors in one route. 

5.3   Adaptation 

The experience maps represent changes in the environment through modification of 
the inter-experience transition information. As well as learning experience transitions, 
the system also monitors transition ‘failures’. Transition failures occur when the 
robot's current experience switches to an experience other than the one expected given 
the robot's current movement behavior. If enough failures occur for a particular 
transition, indicated by the confidence level dropping below a certain threshold, then 
that link is deleted from the experience map. In this way the robot is able to adapt to 
simple changes in the environment without any explicit recognition of objects. The 
system’s ability to adapt to changes in the environment was demonstrated in an indoor 
environment, with the results shown in [22]. 
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6   Discussion 

By testing hippocampal models on actual robots in real world environments, it was 
possible to evaluate their functional navigation performance from a robotics context, 
rather than just their biological plausibility. The results indicate that functional 
navigation performance comparable to other more developed navigation systems can 
be obtained, and demonstrate the potential of a pragmatic bio-inspired approach to the 
mapping and navigation problem.  

However, it might be argued that we have strayed significantly from the original 
biological models in our research, and that we have, in fact, demonstrated that biological 
models don’t translate well to robot systems. The key finding of the pilot study was that 
a separate head-direction – place representation system, common to most biological 
models, could not maintain multiple hypotheses of the robot’s pose over time. The 
separation of the two networks meant that opposing hypotheses of robot orientation 
were effectively averaged causing the hypotheses of the robot’s location to be updated 
erroneously. To overcome this problem we introduced pose cells, which represent a 
conjunction of orientation with place. However, even with pose cells, the representation 
could not be used for meaningful tasks. Discontinuities, ambiguities and collisions in the 
pose cell representations made path planning impossible. 

With consideration of both mapping and navigational requirements, the experience 
mapping system was developed, which created representations ready-made for 
navigation and also map adaptation. Surely all of this invention would indicate that 
the biological models were of little use to translate into a robotic system? We would 
argue that it is not an error in translation from biology to robotics, but an error in the 
original biological models themselves. Recent evidence of grid cells [40, 41] in the 
entorhinal cortex (a region of the brain near the hippocampus) indicates that this 
region of brain integrates ideothetic and allothetic information into a full pose 
representation – as do the pose cells in the RatSLAM model. Grid cells exhibit many 
of the same properties of pose cells, such as discontinuity, ambiguity and redundancy. 
It would seem that the pose cells invented during this research may be closer to 
biological fact than the previously proposed biological models. 

If it is the role of the grid cells to perform the integration of ideothetic and 
allothetic cues, then the hippocampus may store context-specific episodic sequences 
combining a number of cues (including the pose information in the grid cells). 
Perhaps the well defined place representations found in the experience map form a 
closer analogy to the hippocampal place cells. In future work, we intend to pursue the 
links from our model to biology. If biological plausibility can be shown, then the 
RatSLAM model allows predictions to be made regarding neuro-cognitive models of 
rodent navigation in larger environments than the usual small mazes and arenas. 

From a robotics perspective, this research has demonstrated that it is possible to 
create a bio-inspired robot mapping and navigation system that can function in real-
time in large indoor and outdoor environments. Furthermore, the work is one of the 
few attempts to develop a complete integrated navigation system – one that addresses 
not only the primary SLAM problem, but also the problems of exploration, navigating 
to goals, and adaptation. The success of the system can be attributed to the 
consideration of both mapping and navigation requirements during development, and 
to the pragmatic adaptation of the biological navigation models on which it is based.  
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