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Abstract

Inspired by the abilities of the praying mantis to judge 
distance to its prey before the strike by use of motion-
based visually mediated odometry, we create miniature 
model for depth estimation that are similar to the head 
movements of the Praying Mantis. 

We develop mathematical models of the praying mantis 
behavior and describe our implementations and 
experimental environment. We investigate structure from 
motion problem when images are taken from a camera 
whose focal point is translating according to the 
biological model. This motion is reminiscent of a praying 
mantis peering its head left and right, apparently to 
obtain depth perception, hence the moniker “mantis head 
camera.”

We present the performance of the mantis head 
camera model and provide experimental results and error 
analysis of the algorithm. The precision of our 
mathematical model and its implementation is consistent 
with the experimental facts obtained from various 
biological experiments.

I. INTRODUCTION

The study of vision guided abilities in insects has 
become significant not only for entomologists, but also for 
scientists working in robotics and computer vision who are 
using unique functional principles learned from the study 
of insects to develop mathematical models and then, to 
build an intelligent robot, utilizing these principles for 
better performance in certain tasks.

The praying mantis provides excellent opportunities for 
the study of depth estimation by means of self-generated 
retinal image motion and motion parallax. The biological 
experimental facts could then form the basis for a 
biologically relevant mathematical model that would take 
the experimental findings into account, which could be of 
assistance for research in computer and robot vision. Thus 
the eye of a mobile robot could peer from side to side like 
a praying mantis, to estimate depth for the purpose of 
avoiding objects and other purposes. 

In this paper we focus on robot vision for depth 
estimation purpose. With the continuously growing 
development of autonomous robots many groups of 

researchers (both engineers and biologists) conducted 
studies in different directions of biologically inspired 
robotics vision. Generally, work in this domain could be 
classified to top-down (e.g. [13]) and bottom-up (e.g. 
[21]). In the top-down approach a certain task, such as 
path planning [7], visual mediated odometry [3], etc. looks 
for  inspiration in biological model. Where in the bottom-
up approach, a certain biological behavior, such as visual 
mediated navigation [15, 21], visual mediated flight 
control [23, 15], etc. are directly modeled with real robots. 
Our work belongs to the bottom-up approach.

The work presented here can be thought of as part of an 
attempt to model the visual behavior of the Praying 
Mantis. Number of studies of formal behavioral models 
(such as schema-theoretic model) of the praying mantis 
were presented [4, 5]. In these studies, several visually 
mediated activities or behaviors of the praying mantis such 
as prey acquisition, predator avoidance, mating and 
Chantlitaxia were formulated in details. Each of the above 
behaviors could be implemented by set of visual-based 
functions, one of which is investigated here.  Several 
experimental biologic studies researching the visual 
abilities and behaviors of the Praying Mantis were 
presented in [17, 24]. The precision of our mathematical 
model and its implementation is consistent with the 
experimental facts obtained from various biological 
experiments.

Figure1: Mantis Head versus Mantis Head Camera.

In this paper we develop a mathematical model of the 
biologically motivated visual-motor system for depth 
estimation; we describe an implementation of the system 
and experimental environment; we present and discuss the 
performance of the system and provide experimental 
results and error analysis of the algorithm; we present the 
conclusions and propose potential usage of the system in 
mobile robot environment.
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II. THE MODEL

Figure 2.1 illustrates the process. The camera moves 
left and right (pure translation) along the X-axis according 
to the function )(tcc = , where we set )0(cc = . 
Typically this motion is with constant speed (and changing 
direction at the edges of the platform) such as 

0( ) * *c s Vτ τ= , where s is 1 or  –1 depending on the 
peering direction.

Figure 2.1: Mantis head camera model. The surface, 
which cross-section, is given by ( )z g r= , is viewed by a 
camera with focal point moving along the X-axis. ρ
denotes the displacement along the X-axis from the CCD 
center on the image plane at which a feature is projected, 
and 0 ( )r ρ and ( )tr ρ  are the displacements where 
points observed at the displacement ρ  on the image 
plane are located on the surface of the object.

We start from the following relationship, where f is the 
focal length of the camera:

r
f z
ρ

=  .

When the camera is in its initial position ( 0τ = ):

0

0

r
f z
ρ

= .

For tτ = , when the camera is displaced along the X-
axis according to the function )(tc  we have:

( ) ( )
( )

t t

t t

r c t r c tf f
z g r

ρ − −
= = ,

in the same coordinate system. Whence,
1 ( ) ( ),t tg r r c t
f

ρ = −

or 
1 ( ) ( )t tr g r c t
f

ρ= + . (2.1) 

In the most general case we define the inverse function 
as:

( )t cr h ρ= . (2.2) 
The image might be regarded as a function of r which 

itself is a function of time and ρ , say 

( ) ( ( )) ( ( )( ))t c cI F r F h F h tρ ρ= = = . 
Useful information can be obtained by observing the 

ratio of the derivatives of I with respect to ρ and t .
( ) '( ( ))

( ) '( ( ))

t c c
c

t c c
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∂ ∂ ∂ ∂
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. (2.3) 

To evaluate (2.3) we combine (2.1) and (2.2) to obtain
1 1( ) ( ) ( ) ( ( )) ( )c t t ch r g r c t g h c t
f f

ρ ρ ρ ρ= = + = +

Differentiation with respect to ρ  and t  yields
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From (2.3), (2.4), and (2.5) it follows that:
1 ( )
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f f
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( )t t

I
dcg r z f Idt

t

ρ
∂
∂= =
∂
∂

. (2.7) 

In this expression ( )c c t= and 
dc
dt

 are given, while 

I
ρ

∂
∂

 and 
I
t

∂
∂

are determined by observation.
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III. EXPERIMENTAL ENVIRONMENT

A miniature video camera was mounted on a specially 
designed micro-translation platform, which provides 
precise periodic side-to-side peering movements of the 
camera with constant speed. When an electromotor of the 
platform is activated, the camera translates in the direction 
that is parallel to the image plane. This behavior simulates 
the peering behavior of the praying mantis.

Figure 3.1: Scheme of Peering Behavior of Praying 
Mantis and the implementation of the Miniature 
Mantis Head Camera Platform, which utilizes 
peering behavior for distance estimation

The video output signal of the camera is connected to 
the miniature wireless video RF transmitter, which 
broadcasts video signal remotely, thus enabling autonomic 
usage of the device on mobile robot. Both camera and 
transmitter are operated from single 9v battery. The total 
size of the platform with camera and transmitter is 
[10cmx5cmx2cm]. The video signal is then received by an 
RF video receiver that is connected to the PCI frame 
grabber located inside a Dual Pentium III workstation, 
which performs the image processing of all the incoming 
frames. In addition, based on the incoming image analysis, 
the workstation could send action commands back to the 
remote robot, supporting the peering platform.

Varying the target distance and peering velocity 
parameters, performance of the system was measured. 
Targets were placed at various distances in front of the 
camera: 5, 6, 7, 8, 9, and 10 cm. Peering velocities of 
1.5cm/sec and 2cm/sec were used.

[For Mantis Religiosa individuals 50 to 70 mm in size, 
peering amplitudes are approximately 2 to 10 mm and 
peering velocities approximately 6 to 18 mm s-1.]

IV. EXPERIMENTAL RESULTS

Optic flow is a visual displacement flow field that can 
be used to explain changes in an image sequence. The 
underlying assumption used to obtain an equation is that 
the gray level is constant along the visual trajectories.  In 
other words, the partial derivative of the gray level 

( , )tI x y  along the optic flow 

1 2( , ) ( , )dx dyV v v
dt dt

= =  is zero:

0t t tI I Idx dy
x dt y dt t

∂ ∂ ∂
+ + =

∂ ∂ ∂
. (2.8) 

 This equation alone is not sufficient to determine a 
unique vector field, since at any location we have only a 
single scalar constraint with which to find a two-
dimensional vector 1 2( , )v v , which constitutes an ill-
posed problem.

Since in our case the camera moves along the X-axis 

(with constant speed 
dc
dt

), the component of the velocity 

dy
dt

 along the Y-axis is zero, so we can reduce equation 

(2.8) to the following: 0t tI Idx
x dt t

∂ ∂
+ =

∂ ∂
, i.e.

t

t

I
dx t

Idt
x

∂
∂= −
∂
∂

. (2.9) 

Using (2.9) one can rewrite equation (2.7) as (denoting 

xρ = ): 0

1

( )

dc
sVdtg r z f fdx v

dt

= = − = − . (2.10)

Figure 4.1: Reference distance versus averaged estimated 
distance.

According to (2.10), when the observer moves with 
speed 0V , the retinal images of objects close to the eye 

(smaller z ) are displaced more quickly (bigger 1v ) than 
those of more distant objects (bigger z ).

In other words, in the case of a visual field comprised of 
stationary objects, retinal image motion and motion 
parallax initiated by the observer can be used to determine 
the absolute and relative distance of objects. 

In the case of the praying mantis, translatory side-to-
side movements of the head in a horizontal plane are 
performed to determine the jump distance to stationary 
objects. The speed of the retinal image motion is the 
relevant parameter for determining the distance to the 

Reference Depth vs Estimated Depth in Mantis 
method using n=50 in averaging process
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object; thus, by computing the above optic flow one can 
estimate the distance to the objects.

There are two main approaches to computing optic 
flow: Token matching or correlation (extracting features 
from each frame and matching them from frame to frame) 
and Gradient techniques (relating optic flow to spatial and 
temporal image derivatives). Gradient-based methods only 
work when the motion is “small” and the derivative can be 
reliably computed. Note that for “large” motion one can 
employ multi-resolution methods. Tracking algorithms can 
compute motion when the motion is “large” by using 
correlation based methods or feature tracking. In our 
model we used the token matching approach.

In our experiments the target object was placed at 
various known distances in front of a constantly peering 
camera. The distance to the object was estimated by 
computing 1v in equation (2.10) via the token matching 
(fast feature tracking) technique. The experimentally 
estimated distances were compared to their true values and 
the accuracy of the estimations was calculated.

For each peer of the camera the object was sampled 
n=50 times with constant frame rate of 30 Hz, and the 

average 1v  was computed as 1 1
1

1 i n

i
i

v v
n

=

=

= ∑ , which 

greatly improves the accuracy of the estimation algorithm.

Figure 2.4: Tiny Lego Robot utilizes Miniature Mantis 
Head Camera. Sequence order: top left, top right, bottom 

left, bottom right.

Figure 2.5: Two subsets (of 4 samples each) captured 
during left to right peer of the Mantis Head Camera 
Platform. (Nature scenarios). Sequence order: top left, 
top right, bottom left, bottom right

.

V. ERROR ANALYSIS

In what follows we discuss the sources of inaccuracy of 
the described algorithm. Then a scheme for accuracy 
evaluation of the estimated depth will be proposed.

The algorithm presented here requires flow calculation; 
therefore the approximation accuracy of 1v in expression 
(2.10) has a critical role for the depth estimation accuracy. 
The approximate precision of 1v  is mainly determined by 
noise and quantization. The influence of these two factors 
is investigated below.

The deviation in the camera motion speed is another 
factor, which also has a significant impact on the 
algorithm accuracy. The algorithm assumes a precise 
mechanical setup, i.e. constant camera motion speed. 
However, this assumption was difficult to satisfy 
absolutely. The influence of this factor on the algorithm 
accuracy is also investigated.

Let v� and �u  be the approximated retinal images and 
observer velocities, respectively. Then the absolute error 
in the depth estimation Z∆  can be calculated using the 
following equation, obtained from (2.10). (For brevity, we 
introduce k = fs−  in all equations below):

( ) ug r Z k
v

= = , (2.11)

where 
dcu
dt

= , 
dxv
dt

= . 

� �
( )u uZ Z Z k

vv
∆ = − = −� . (2.12)

Let uδ , vδ be the relative errors in the approximation:

�
u

v

u u
u

v v
v

δ

δ

   −
   
   
   −       

�
�

(2.13)

Then,
� (1 )u uu u u uδ δ= + = +

(1 )v vv v v vδ δ= + = +� .
Using the above notation and (2.12) we obtain:

� (1 )( )
(1 )

u

v

u uZ Z Z k
v v

δ
δ

+
∆ = − = −

+
,

which can be simplified to:
(1 ) ( )( 1) ( )
(1 ) (1 )

u u v

v v

u uZ k k
v v

δ δ δ
δ δ

+ −
∆ = − =

+ +
(2.14)

Now, letting the upper bound of vδ  be M, and 

denoting B to be the following constant 
1

1
B

M
=

−
, (2.15)

(2.14) implies:
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( )vuZZ δδ −≈∆  and

( )BZZ vu δδ +≤∆  . (2.16)

To estimate the expected depth calculation error, we 
insert the standard deviation uσ  and 

vσ into the error expressions uδ and vδ :

u
u

u
σ

δ =  and 
v

v
v

σ
δ =  .

The relative error Zδ of the estimated depth can be 
evaluated using the relations above and(2. 16): 

Z
Z

Z
ZZ

Z
∆

=
−

=
^

δ  , 

vu
B

vu
vuvu

Z
σσσσ

δ +≈









+≤  . (2.17)

(2.17)gives a rough evaluation of the accuracy of the 
estimated depth in(2.10). Sampling n times, during each 
peer of the camera, and computing the average 1v

according to 1 1
1

1
2

i n k

i
i k

v v
n k

= −

= +

=
− ∑

���
, where 1nv

���
is sorted 

1nv , greatly improves the accuracy of the estimated depth.
In this part we will investigate the expected accuracy of 

the proposed depth estimation method. This accuracy 
evaluation is based on the algorithm implementation 
scheme described before. 

At first, we will concentrate on the imaging factor v�  of 
the algorithm’s expected inaccuracy. The inaccuracy of 
this term is caused by several factors: The image function 

( , )I tρ  is given on a discrete grid and not on a 
continuous one. The values of the function ( , )I tρ are 
quantized. The values of the function ( , )I tρ are noisy.

We use synthetic image sequences for the estimation of 
the quantization and noise influence. The generated 
images were degraded with a Gaussian additive noise with 
mean 0µ =  and variance 2σ , with the noise values at 

two different pixels being independent. The v�
approximations of the degraded data were calculated and 

compared to the ideal v� values (without noise and 
quantization). The mean square value of the error was 
calculated for the different values of noise variance 

2σ and neighborhood size. The received values of the 

approximation errors of v�  are shown in Figure 4.6. This 
table demonstrates the approximation accuracy as a 
function of noise variance 2σ  and neighborhood size 

used for v� approximations. The error values shown in the 
columns corresponding to 2 0σ = are approximation 
errors caused by quantization only.

Si
gm

a=
0

0.
5 1

1.
5 2

2.
5 3

7x7
3x30

2
4
6
8

10
12
14
16
18

Error of V (%)

Sigma value of noise

NxN 
neighborhood 

Approximated image velocity (V) in Mantis method 
as function of noise variance and neighborhood 

size
7x7
5x5
3x3

Figure 4.6. The simulation-based errors of the depth 
estimation as a function of the noise variance 2σ and 

neighborhood size used for the approximation of v� . The 
first column 0σ =  shows the error values caused by 
quantization only.

From Figure 4.6-[graph series] it follows that for a 
camera characterized by a 1% noise (~2.0 grey level per 
pixel), which is typical for real cameras, the accuracy of 
the depth estimation is about 2%.

The inaccuracy in the observer velocities �u  is due to 
the speed of the camera not being constant.

This value is determined by counting the number of 
frames between the border frames (frames with no motion 
detected). There could be an error of 2 frames from a total 
of 66 frames in this procedure. Using this calibration 
procedure a number of times and applying simple 
averaging on the noisy results, the estimated error of the 
observer is about 1%.

From the above calculations it follows that one can 
expect a depth estimation error of about 3% from the 
actual camera setup. 

This expectation is consistent with the errors in the 
depth estimation values obtained from the algorithm’s 
execution.

VI. CONCLUSIONS

In this study a biologically motivated mathematical 
model of depth estimation and its implementation were 
presented. We showed how one can recover depth using 
peering behavior that is commonly used by the praying 
mantis. The model is consistent with recent behavioral and 
anatomical evidence collected from various biologic 
experiments with the praying mantis [17, 24]

The presented system can estimate a depth to a set of 
objects, similarly to the ability of praying mantis, which 
can be used by mobile agent for learning the surrounding 
space, collision avoidance and navigation. The real-time 
performance of the model adds to its attractiveness for 
usage with mobile agents.

The miniature and extremely light mechanical, optical 
and electronic implementation of the model was 
presented. This property makes it possible to install it on 
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top of small mobile robot or smaller vehicle and use it to 
obtain depth information of points of interest in the 
surrounding space.

The single percent precision depth estimation, achieved 
by the model and its implementation, are consistent with 
both the results of error analysis and those demonstrated 
by live praying mantis during its prey catching process.

As items for future work, we plan to investigate other 
visual routines of the praying mantis. Particularly, we plan 
to use our mantis head platform mounted on miniature 
mobile robot in order to implement some of the visual 
behaviors of the praying mantis, as presented by Arkin et 
al [4]. We also plan to implement some of the real-time 
indoor navigation algorithms [20, 16] using Lego mobile 
robots with the mantis head platform. Using precise 
distance estimation by the platform, Lego robots will be 
available to perform an accurate docking and other 
precision requiring tasks, which are difficult to achieve 
with standard Lego environment. As another direction for 
future work, we plan to study the principles of different 
types of self motion for precise depth estimation used by 
other animals, measure their sensitivity, evaluate precision 
and compare to that used by the praying mantis.

In this study, we have developed a mathematical model 
of the biologically motivated visual-motor system for 
distance estimation, then described an implementation of 
the system and experimental environment, presented and 
discussed the performance of the system and experimental 
results, provided an error analysis of the algorithm and its 
high precision, which is consistent with that of the praying 
mantis, and presented directions for the future work.
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