
A biomimetic reactive navigation system using the optical flow
for a rotary-wing UAV in urban environment.

Laurent Muratet , Stéphane Doncieux , Jean-Arcady Meyer

AnimatLab, LIP 6, University of Paris 6 - CNRS, France

Abstract— Flying insects, such as houseflies or bees,
have sensory-motor abilities that still outperform
those of UAV. Beyond their flying manoeuvrability,
they benefit from a reactive navigation system that
enables them to wander in cluttered environments
thanks to visual information. Their nervous system,
relatively simple compared to that of other animals,
exploits this information to efficiently extract the
optical flow, which informs them about the distances
of perceived objects. A navigation strategy that
exploits the optical flow to avoid collisions with both
lateral and frontal obstacles has been used here to
control a realistic simulated rotary-wing UAV in a 3D
urban textured environment.

I. Introduction

Flying robots are specific platforms whose control raises
new problems with respect to ground robots.
For instance, they can hardly call upon usual sensors to
navigate in their environment because infra-red sensors
are sensitive to external light and can detect nearby
obstacles only; because sonar sensors are too slow or too
heavy for small platforms; and because lasers are too
dangerous to be used in urban environments. Not
surprisingly in these conditions, there is currently no
obvious solution to the problem of deciding with which
sensor to equip a small UAV capable of flying in an
urban environment without hitting obstacles.
In this paper, we draw inspiration from biology to assess
the capacity of vision to tackle this problem. Indeed,
visual images provided by a moving camera inform about
the structure of the environment and notably about the
distance of surrounding obstacles. This information can
be extracted from the analysis of pixel movements in the
image, i.e., by what is called the optical flow. Because an
equivalent strategy has been exploited for millions of
years by flying insects or birds, we have implemented it
on a simulated helicopter moving in a realistic 3D
environment to assess its adaptive value in these
conditions.

Results to be shown here are based on a realistic physical
model of a rotary-wing UAV, which is combined with a
3D-engine that generates images that are used by the
obstacle-avoidance system. This system interacts with a
low-level controller in charge of keeping the helicopter as

stable as possible. The 3D environment is generated and
monitored with Crystal Space1, an open source software.
A real-time correlation-based algorithm is used to
compute the optical flow.

The paper successively describes the physical model of
the UAV and its low-level controller, the optical flow
algorithm, the navigation strategy and its biological
background, the high-level controller for obstacle-
avoidance. The results of several simulations realized in
three different urban environments are then presented and
discussed. Finally, possible improvements of the system
are suggested.

II. The simulated UAV platform

 The physical model

The simulated robot is a rotary-wing UAV inspired from
the Concept 60 SR II (Figure 2), a remote-controlled
helicopter produced by the Kyosho Company. It has six
degrees of freedom: three coordinates (x, y, z) and three
attitude angles, i.e., the yaw (ψ), pitch (θ) and roll (φ). It
weights 4.5 kg, with a length of 140 cm, a width of 15 cm
and a height of 47 cm. Its main rotor has a diameter of
150 cm while that of the tail rotor is 26 cm. It is assumed
to be able to carry the visual system described below.

Figure 1. The Concept 60 SR II.

1 http://crystal.sourceforge.net

To simulate this engine, we used Autopilot2, a physical
simulator that has already been efficiently applied to such
purpose3.

 The robot’s sensors and effectors

The navigation strategy implemented in this work called
upon seven sensors: a video camera, two accelerometers,
two gyros, a compass and an altimeter.
Data acquisition by the video camera is simulated using
the realistic 3D environment generated by Crystal Space.
This software outputs 25 images per second that make it
possible to compute an optical flow that can be used by
the high-level controller to avoid obstacles.
Inertial information is obtained from the attitude angles
and from the speed of the UAV that are provided by the
physical model. These values are corrupted by a Gaussian
noise that simulates measurement errors.

 The robot’s low-level controller

A helicopter is an unstable platform that must be
controlled permanently. Therefore, besides using the
optical flow to monitor horizontal displacements that
would serve to avoid obstacles, the six degrees of
freedom of the robot must be controlled in parallel. To
this end, a low-level controller has been designed that
makes possible a flight in straight lines, with a small
lateral component (Vy) and at a constant altitude. This
low-level controller capitalizes upon six PID blocks
(Figure 2) whose inner coefficients were empirically
determined during the experiments. More specifically, the
main rotor collective block is used to keep the helicopter
at a target altitude. The tail rotor collective block controls
the yaw motion during turns and compensates the anti-
torque generated by the main rotor in order to keep a
target heading Ψtarget. The longitudinal attitude block
regulates the pitch and, consequently, the forward motion
Vx. The lateral attitude block controls the roll and the
lateral motion Vy that the strategy described below needs
to keep as low as possible.
θ, φ, Vx and Vy are obtained trough integration of gyro
and accelerometer values. Z is obtained from the
altimeter and Ψ from the compass.
This low-level controller efficiently keeps each of the
DOF, but can't avoid small pitch, roll and heading
oscillations. As they corrupt the computation of the
optical flow, a simple linear filter that simulates a
mechanical gyro stabilization system4 has been used to
eliminate these oscillations.

2 http://autopilot.sourceforce.net
3 http://autopilot.sourceforge.net/gallery.html
4 http://www.ken-lab.com/stabilizers.html#KS2

Figure 2. The low-level controller calling upon six PID
modules. Z-target remains constant and Vy-target remains null
during an experiment. Ψtarget and Vx-target are determined
by the high-level obstacle-avoidance controller. The
dynamics of the helicopter depend upon four output
signals: B, A, M and T.

III. The optical flow

 Computational principle

The optical flow perceived by a camera is the velocity
field created by the projection of the scene onto the image
plan. Two main categories of algorithms may be used to
compute this flow [1]. Those that are based on
differential methods focus on accuracy. Those that are
based on correlations are targeted at robustness and have
been preferred in the present application.

Standard correlation-based methods try to determine, for
each pixel (x,y), the v*v pixel-wide patch Pv centered on
(x+u,y+w) in frame t that best matches the patch Pv
centered on (x,y) in frame t-1. Matching patches are
sought in a square region delimited by points of
coordinates (x-n,y-n) and (x+n,y+n). For each possible
match, a matching strength value M is computed from
equation (1) that compares the pixel intensities I of the
two patches. We use f, the absolute difference between
their intensities, to compare two pixels.

For each pixel (x,y):

() { } { } () =−×−∈∀ wuyxMnnnnwu ,;,:,...,,...,,

() ()()∑
∈

− ++++−++
p

jwyiuxjyixf
V

ji
tt II

),(
1 ,, (1)

Under these conditions, the actual motion of pixel (x,y) is
(u,w), which corresponds to the displacement between

(x,y) and the centre of the patch that minimizes the
matching function M (Figure 3). However, to determine
this motion is computationally expensive and hardly
applicable to real-time applications because of the
quadratic dependency of the search upon n, the maximum
motion detected: to find the best one, the algorithm must
compute (2n+1)*(2n+1) matches. This is why we used a
variant of this algorithm – the so-called real-time
quantized version [3] - that was more compatible with
our needs.

Figure 3: Best match between two Pv patches of pixels in
two consecutive frames. Accordingly, pixel (0,0) is
assumed to have moved to position (2,-4) between frames
t-1 and t. In this example, 3*3 pixel-wide patches, and a
target region defined by a n value of 5, were used.

 Real-time application

The real-time quantized algorithm is a correlation-based
algorithm in which the search over space is replaced by a
search over time. Using equation (1), the matching
strength is computed in a n=1 neighbourhood. Thus, the
possible values for u and w are restricted to the range
{-1,0,1}. For each pixel, a motion between the image at
time t-1 and the image at time t is computed, as well as
motions between images at t-2 and t, t-3 and t, and so on
until t-S, S being an empirically-determined depth value.

Figure 4: A motion of (-1,-1) between t-2 and t is
equivalent to a motion of (-1/2,-1/2) between t-1 and t if
we make the assumption of a constant motion.

As demonstrated on figure 4, with the assumption of
constant motion, the actual motion of pixel (x,y) is
(u/i,w/i), which corresponds to the displacement (u,w)

between (x,y) in frame t-i and the centre of the patch in
frame t that minimizes the matching function M. As a
consequence, this variant evaluates pixel motions in the
range 1/S to 1, while the original algorithm operates in
the range 1 to n. Moreover, with n set to 1, the variant
computes 3*3 matches per frame, i.e., 9*S matches for S
frames. Therefore, this method is a trade-off between a
quadratic search over space and a linear search over time.
There is however a slight drawback associated with this
computational gain, because the method doesn't afford
detecting motions greater than one pixel per frame.
Nevertheless, this limitation may be overcome by
considering blocks of pixels instead of isolated ones.
Pooling pixels by blocks of p*p multiplies the amplitude
of detectable motions by p, and reduces the number of
pixels considered by p*p. Hence, it improves both the
range and the speed of the algorithm. Such improvement
has not been used here.

 Obstacle-avoidance

Biological inspiration

In 1865, Von Helmholtz explained how some animals are
able to evaluate the distances of lateral objects by using
motion parallax. Since that time, numerous studies have
investigated the corresponding mechanisms. In particular,
Franceschini [6] described how the organization of the
compound eye of the housefly, and how the neural
processing of visual information obtained during the
flight, allow this insect to compute its distances to lateral
obstacles and to avoid them. This biological knowledge
was exploited to implement a real opto-electronic device
inspired by the visual system of the housefly on several
terrestrial and aerial robots, thus allowing them to wander
in their environments [6], [7] and [8]. However, the
corresponding control laws concerned one degree of
freedom only, and the flying robots that were used were
not entirely free of their movements. Moreover, the real-
time computation of the optical flow calculation was
made easy thanks to the specific environments that were
used, in which dedicated white and black stripes helped
to detect motion.

Likewise, other scientists have understood how other
animals use the frontal optical flow to estimate the so-
called time-to-contact, i.e., the time before a frontal
collision is likely to occur. The gannet is supposed to use
this information when it quickly dives to catch a fish and
determines the exact moment when to fold its wings
before entering into the water [9].

The high-level obstacle-avoidance controller

The component of the optical flow that is required to
avoid obstacles is generated by a forward translation of
the observer. In this case, the horizontal velocity of an
object is proportional to the inverse of its distance to the
observer.
From figure 5, one may derive the following relationship:

Z
X

z
x = which, after differentiating with respect to time

leads to: •• −=
Z

Z

x

x
.

Replacing
•
x by Vx,

•
Z by –Vo and Z by d*cos(β), it

finally appears that the pixel velocity Vx is given by
equation:

)cos(
0

β×
×

=
d

x
Vx V (2)

From this equation, we can deduce that a strategy that
equalizes the perceived pixel velocities will tend to
maintain equal the distances to obstacles on both sides of
the helicopter. This strategy is called a balance strategy
[5].

Figure 5. The moving UAV in point O perceives the
circular object P(t) with a relative angle β. d is the
distance between the observer and the object. Vo is the
speed of the UAV.

To be efficient, this strategy must rely on the optical flow
that is generated by forward translations only.
Accordingly, the high-level controller that implements it
must make decisions about the platform’s trajectory only
in situations where this platform is neither turning (|Ψ-
Ψtarget|<1°) nor skidding (|Vy|<V0*0.05,

VVV yx
22

0 +=). When the high-level controller has

triggered a turn by determining an appropriate Ψtarget
value in order to avoid an obstacle, skids occur for some
time, even after the platform gets aligned on the right
course. To minimize such skids and to limit the risk of
collisions, a target forward speed of 0 is transmitted to
the low-level controller whenever the helicopter needs to
turn. An equivalent behaviour has been observed in the
housefly whose flight trajectories are a combination of
straight lines and tight turns, during which any decision
based on the optical flow is inhibited [6].
Under these conditions, the control law that served to
balance the optical flow on both sides of the helicopter
was:

ψ∆ _target ()VxVx mean

left

mean

rightk −= (3)

In this equation, Vxmean

right
and Vxmean

left
represent the

means of horizontal motions of pixels on the left and on
the right, k being a proportionality factor.

Moreover, as the optical flow algorithm can detect
motions in a limited range only (from 1/S to 1 pixel), care
must be taken to avoid pixel motions getting past these
bounds. As the horizontal pixel velocity is proportional to
the ratio V0/d, the longitudinal speed V0 must be adapted
to the average distance to obstacles. The more cluttered
this environment, the slower the robot must fly, and vice
versa. This behaviour has been observed in bees, which
adapt their velocity to the distance of perceived obstacles
[10].
For these reasons, we compute a target speed Vx_target
according to the following equation:

Vx∆ _target ()VxVxOF mean
left

mean
rightD w ,max×−= (4)

where OFD corresponds to the desired average optical
flow (we empirically set OFD to 0.06 in these
experiments). In this equation, the maximum of the
optical flows on both sides of the platform was used
instead of an average value, thus avoiding premature
accelerations in cases when near obstacles could be
detected on one side only.

Finally, the high-level controller was endowed with a
second reflex that served to avoid hitting a front wall, a
situation in which the lateral optical flows are equal on
both sides of the robot. This reflex called upon a rough
estimate of the time-to-contact τ , according to which a
U-turn order (∆Ψtarget = 180°) was generated when the
quantity of movement on both sides of the image was
above a given threshold ε.

Thus, the high-level controller that was used in this work
implemented a subsumption architecture [2] according to
which the U-turn reflex had a higher priority level than
the balance strategy.

IV. Experimental results

The controller just described has been put at work in
three different environments. They are 100m-wide cubes,
while the main rotor of the simulated helicopter has a
length of 150 cm. They are closed by detectable walls
thus making it possible for the helicopter to wander
inside of them for a long time, if no crash occurs. Twenty
experiments, lasting five minutes each, were performed
in each environment. The starting point of each such run
was a randomly-chosen position S, with no near frontal
obstacle.

We used a simulated camera with a field of view of 90
degrees, with an extended-in-time optical flow algorithm
using a S value of 10 steps and a 3x3 patch Pv. An input
visual flow of 25 simulated images of 256x256 pixels per
second was thus generated that served to control the
helicopter (Figure 6).

Figure 6. The left image represents the simulated
environment. The central image shows horizontal
motions detected by the optical flow algorithm: black
pixels are not moving, light-grey pixels are moving
towards the left, dark-grey pixels are moving towards the
right. The right image indicates the velocity: clearer
pixels move faster.

Table I shows the results that have been obtained in each
environment. Figures 7 to 9 show specific trajectories.

 Env 1 Env 2 Env 3 Env 3 with

constant ambient
light

Survival rate
(%)

100

95

70

100

Average survival
time (sec)

300

299.82

258.7

300

Standard
deviation of
survival time

(sec)

0

0.79

79

0

Average velocity
(ms)

0.64

0.56

0.47

0.45

Standard
deviation of

velocity (m/s)

0.06

0.03

0.04

0.04

Table I. Experimental results obtained in three different
environments. 20 experiments, lasting 300 seconds each,

were performed in each environment.

It thus appears that the helicopter never hit an obstacle in
the first environment, but that its survival rate dropped to,
respectively, 95% and 70% in the two others, more
cluttered, environments.
To avoid the corresponding crashes, lowering the ε
threshold implied in the τ reflex wouldn't be wise
because it would prevent the helicopter from entering into
narrow corridors and, thus, from exploring its
environment.

Figure 7: first environment including six obstacles which
cover around 20% of the surface. S is the starting point of

a specific trajectory among 20.

A closer inspection of all the situations in which crashes
occurred revealed that these episodes all concerned dark-
textured walls. They were due to the sensitivity of the
algorithm to light conditions: not enough moving pixels
being detected, the total optical flow was underestimated
and the avoidance reflex was not triggered. This is why
we performed a fourth series of 20 runs in Environment
3, with the same initial conditions that were previously
used in this environment, but using a constant ambient
light to eliminate dark places (Table I column 4). The
corresponding survival rate raised to 100 %.

Figure 8: second environment including 11 obstacles

which cover around 30% of the surface. S is the starting
point of a specific trajectory among 20. The helicopter

has made two U-turns to escape from dead-ends.

Concerning velocity control, the average speed of the
helicopter decreased with the number of obstacles from
0.64 m/s in Environment 1 to 0.47 m/s in Environment 3.
Although additional information would be necessary to
confirm this conclusion, it seems that the low-level

controller succeeds to adapt the helicopter's velocity to its
local environment, confining it to a range (from 1 to 1/S)
where the optical flow extraction algorithm works
correctly.

Figure 9: third environment including 18 obstacles which
cover around 40% of the surface. S is the starting point of

a specific trajectory among 20.

V. Discussion

Several improvements on the current simulations are
conceivable at this stage of development. A first
possibility would be to call upon evolutionary algorithms,
like those we already applied to other flying platforms
[4], to generate low-level controllers likely to reduce
blind periods when the UAV is turning or skidding. Still
another possibility would be to improve the optical flow
extraction algorithm, notably by considering blocks of
pixels instead of isolated ones, so as to make the
computation less time-consuming and to detect motions
of greater amplitude. The impact of light variations on the
algorithm should also be considered, as this effect
seemed to be responsible for the observed collisions in
the experiments described above.

The ultimate goal of this research effort being to
implement the navigation strategy on a real helicopter,
three major improvements seem necessary to bridge gaps
between simulation and reality. In particular, a wind
model must be added to the present system. This is an
ambitious challenge because the dynamics of a wind
blowing between buildings is very hard to simulate.
Additionally, we have to assess whether the current
simulation of the UAV's sensors is realistic enough.
Likewise, the optical flow computation algorithm that has
been used here must be checked on real images.

VI. Conclusion

The preliminary simulation results presented here are
encouraging. The rotary-wing UAV is able to explore a
cluttered environment without hitting obstacles, thanks to
a two-level controller based on optical flow calculations
that has been tested in unknown urban-like environments.
This controller generates a cautious behaviour: the

corresponding helicopter is preferentially following wide
corridors and it tends to stay in their middle. At the same
time, its longitudinal translation velocity is automatically
adapted to obstacle density: the helicopter moves faster in
free space and slows down in presence of obstacles.
Moreover, when facing a frontal obstacle, the controller
is able to generate a tight U-turn that ensures the UAV's
survival.
Several improvements to the current simulated system are
considered in the text that should help implementing it on
a real platform.

REFERENCES

[1] Barron, J. L., Fleet, D. J., Beauchemin, S. S., (1994).
System and experiment performance of optical flow
techniques. International journal of computer vision. 12,
43-77.
[2] Brooks, R. A., (1991b). New approaches to robotics.
Science. 253, 227-1232.
[3] Camus, T. (1997). Real-time quantized optical flow.
The journal of real-time imaging (special issue on real-
time motion analysis). 3, 71-86.
[4] Doncieux, S. and Meyer, J.-A. (2003). Evolving
neural networks for the control of a lenticular blimp. In
Raidl and al. (Eds). Application of evolutionary
computing. Springer Verlag.
[5] Duchon, A. P. (1996). Maze navigation using optical
flow. In Maes, Mataric, Meyer, Pollack and Wilson
(Eds). From animals to animats 4: Proceedings of the
fourth international conference on simulation of adaptive
behaviour. The MIT Press.
[6] Franceschini, N., Pichon, J. M., and Blanes, C.
(1992). From insect vision to robot vision. Philosophical
Transactions of the Royal Society of London. Series B,
283-294.
[7] Franceschini, N. and Mura, F. (1994). Visual control
of altitude and speed in a flying agent. In Cliff,
Husbands, Meyer and Wilson (Eds). From animals to
animats 3: Proceedings of the third international
conference on simulation of adaptive behaviour. The
MIT Press.
[8] Franceschini, N. and Netter, T. (1999). Neuromorphic
optical flow sensing for nap-of-the-earth flight. Mobile
robots XIV, SPIE Vol. 3838. Bellingham.
[9] Lee, D.N. (1980). The optic flow field: the foundation
of vision. Philosophical Transactions of The Royal
Society of London. Series B. 290, 169-179.
[10] Srinivasan, M.V. and al. (1996). Honeybee
navigation en-route to the goal: visual flight control and
odometry, Journal of experimental biology, Special issue
on navigation, Vol. 199(1), pp. 237-244.

