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Abstract

A navigation strategy that exploits the optic flow and inertial information to con-
tinuously avoid collisions with both lateral and frontal obstacles has been used to
control a simulated helicopter flying autonomously in a textured urban environment.
Experimental results demonstrate that the corresponding controller generates cau-
tious behavior, whereby the helicopter tends to stay in the middle of narrow corri-
dors, while its forward velocity is automatically reduced when the obstacle density
increases. When confronted with a frontal obstacle, the controller is also able to
generate a tight U-turn that ensures the UAV’s survival. The paper provides com-
parisons with related work, and discusses the applicability of the approach to real
platforms.
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Airborne devices are specific platforms whose control raises distinctive diffi-
culties as compared to ground robots. For instance, they can hardly rely upon
usual sensors to navigate, especially if the challenge is to let them move in an
urban environment – because infra-red sensors are sensitive to external light
and can only detect nearby obstacles, because sonar sensors are too slow or
too heavy for small platforms, and because lasers are too dangerous to be used
in the presence of unadvised humans. Not surprisingly, under these conditions,
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there is currently no obvious solution to the problem of coming up with sen-
sors to equip a small UAV 1 capable of flying in an urban environment without
hitting obstacles. This is why, in this paper, we draw inspiration from biology
to assess the potential for using vision to tackle this problem. Indeed, because
the distance between their two eyes can be very small in many animal species,
such individuals cannot rely on stereoscopic vision to assess the distances of
surrounding objects [10]. They, therefore, have developed specific neural pro-
cesses based on motion detection and optic flow monitoring to estimate these
distances. In this paper, we have implemented such a biomimetic strategy on
a simulated helicopter moving in a realistic 3D urban environment to assess
its adaptive value under these conditions.

The results described below are based on a realistic physical model of a rotary-
wing UAV which is combined with a 3D-engine generating images that are
fed into an obstacle-avoidance system. This system interacts with a low-level
controller responsible for keeping the helicopter as stable as possible. The 3D
environment is generated and monitored with Crystal Space 2 , an open-source
software. A real-time correlation-based algorithm is used to compute the optic
flow.

The paper successively describes the physical model of the UAV and its low-
level controller, the optic flow extraction algorithm, the navigation strategy
and its biological basis, and the high-level controller for obstacle-avoidance.
The results of several simulations performed in three different urban environ-
ments are then presented and discussed. Finally, possible improvements to the
system are suggested.

1 The simulated UAV platform

1.1 The physical model

The simulated robot is a rotary-wing UAV inspired from the Concept 60 SR
II (Fig. 1), a remote-controlled helicopter produced by Kyosho 3 . It has six
degrees of freedom: three coordinates (x, y, z) and three attitude angles, i.e.,
the yaw (ψ), the pitch (θ) and the roll (φ). It weighs 4.5 kg and is 140 cm long,
15 cm wide, and 47 cm high. Its main rotor has a diameter of 150 cm, while
that of the tail rotor is 26 cm. It is assumed to be able to carry the visual
system described below. To simulate this device, we use Autopilot, a physical

1 Unmanned Aerial Vehicle
2 http://crystal.sourceforge.net
3 http://www.alansmodels.com/helis/con60sr2.htm
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Fig. 1. The Concept 60 SR II.

simulator that has already been used efficiently for such a purpose 4 .

1.2 The robot’s sensors and environment

The navigation strategy implemented in this work calls upon two sensors: a
video camera and an Inertial and Attitude Measurement Unit (IAMU) sup-
posedly equipped with Kalman-filtered accelerometers, gyrometers and mag-
netometers like those readily available off the shelf 5 . To simulate the remain-
ing measurement errors, the altitude, attitude and speed input to the UAV’s
controllers are corrupted by a Gaussian white noise as described below.

1.3 The robot’s low-level controller

A helicopter is an unstable platform that must be permanently controlled.
Therefore, in addition to using optic flow to monitor horizontal displacements
that allow obstacle avoidance, the robot’s six degrees of freedom must be
simultaneously controlled. A low-level controller has been designed for this
purpose enabling straight-line flight, with a small lateral component Vy and
at a constant altitude (Fig. 2). A linear model of the helicopter has been
identified around a nominal state (straight flight at low speed). A coupling
between M (main rotor collective) and ωz (heading rotational speed) has been
compensated by a simple feedforward gain. With this simple pre-control, the
helicopter’s degrees of freedom are well decoupled, thus affording an efficient
design of four independent PID controllers. The main rotor collective M is
used to maintain the helicopter at a constant altitude z. During turns, the

4 http://autopilot.sourceforge.net/gallery.html
5 see, e.g., http://www.micropilot.com, http://www.xsens.com, or
http://www.microstrain.com
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tail rotor collective T controls the yaw ψ. The longitudinal attitude block
regulates pitch θ and consequently forward motion Vx. The lateral attitude
block controls roll φ and lateral motion Vy that the strategy described below
needs to hold to a minimum. The values of ψ, θ, φ, Vx, Vy and z are obtained
from the internal states of the simulator. The experimental results described
below demonstrate that this low-level controller provides a high close-loop
bandwidth and affords efficient capacities for perturbation resistance.
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Fig. 2. The helicopter’s low-level controller calling upon six PID modules. Ztarget

remains constant and V target
y remains null during an experiment. The values of

ψtarget and V target
x are determined by the high-level obstacle-avoidance controller.

The dynamics of the helicopter depend upon four output signals: A, B, M and T .
The high-level controller calling upon optic flow calculation is described in Section
3.

2 Optic flow

2.1 Introduction

When the external world is projected onto the image plane of a camera, the
movements of each point in this plane define the so-called motion field, from
which information about the self-motion of the camera or about the structure
of the scene can be inferred. When such movements are sampled, by means
of a video stream for instance, the apparent motion of pixels in the image
constitutes the optic flow, which is a convenient approximation of the motion
field if the intensity of each pixel is preserved from one frame to the next.
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This is why, to compute the optic flow in this work, the hue of each pixel (i, j)
is used to evaluate its intensity value I(i, j), because this type of data is not
very sensitive to changes in light intensity.

Several varieties of algorithm can be used to compute optic flow [3]. Differ-
ential methods [21,26] call upon spatio-temporal intensity derivatives. Cor-
relation approaches [1] rely on feature matching. Frequency-based methods
[16] use velocity-tuned filters in the Fourier domain. In this work, correlation
techniques have been preferred because they are known to be robust and be-
cause experience demonstrates that they are accurate enough to make efficient
control possible.

2.2 Region matching computational principle

Standard correlation-based methods try to determine, for each pixel (i, j) in
an image, the v×v pixel-wide patch Pv centered on (i+u, j+w) in frame t that
best matches the patch Pv centered on (i, j) in frame t− 1. Matching patches
are sought in a square region delimited by points of coordinates (i− n, j − n)
and (i+n, j+n). For each possible match, a matching-distance M is computed
from Eq. (1) that compares the pixel intensities I of the two patches.

For each pixel (i, j): ∀(u, w) ∈ {−n, . . . , n} × {−n, . . . , n}

M(i, j; u, w) =
∑

(x,y)∈Pv

∣∣∣It−1(i + x, j + y) − It(i + x + u, j + y + w)
∣∣∣ (1)

Under these conditions, the actual motion of pixel (i, j) is (u, w), which corre-
sponds to the displacement between (i, j) and the centre of the patch that min-
imizes the matching-distance M (Fig. 3). However, to determine this motion is
computationally expensive and hardly applicable to real-time applications be-
cause of the quadratic dependency of the search upon n, the maximum motion
detected. To find the best one, the algorithm must compute (2n+1)×(2n+1)
matches. This is why we used a variant of this algorithm - the so-called real-
time quantized version [7,8] - that was more compatible with our needs.

2.3 Real-time application

The real-time quantized algorithm is a correlation-based algorithm in which
the search over space is replaced by a search over time. Using Eq. 1, the
matching-distance is computed in a n = 1 neighbourhood. Thus, the possible
values for u and w are restricted to the range {−1, 0, 1}. For each pixel, a
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Fig. 3. Best match between two Pv patches of pixels in two consecutive frames. Ac-
cordingly, pixel (0, 0) is assumed to have moved to position (2,−4) between frames
t − 1 and t. In this example, 3 × 3 pixel-wide patches, and a target region defined
by a n value of 5, were used.

motion between the image at time t− 1 and the image at time t is computed,
as well as motions between images at t − 2 and t, t − 3 and t, and so forth
until t − D, D being an empirically-determined depth value.

Fig. 4. A motion of (1, 1) between t − 2 and t is equivalent to a motion of (1
2 , 1

2)
between t − 1 and t, if a constant motion is assumed.

As demonstrated on Fig. 4, assuming constant motion over D frames, the
actual motion of pixel (i, j) is (u

i
, w

i
), which corresponds to the displacement

(u, w) between (i, j) in frame t− i and the centre of the patch in frame t that
minimizes the matching-distance M . As a consequence, this variant evaluates
pixel motions in the range 1

D
to 1, while the original algorithm operates in the

range 1 to n. Moreover, with n set to 1, the variant computes 3×3 matches per
frame, i.e., 9×D matches for D frames. Therefore, this method is a trade-off
between a quadratic search over space and a linear search over time. There is,
however, a minor drawback associated with this computational gain, because
the method doesn’t allow motions greater than one pixel per frame to be
detected. Nevertheless, this limitation may be overcome by considering blocks
of pixels instead of isolated ones. Pooling pixels by blocks of p × p multiplies
the amplitude of detectable motions by p, and reduces the number of pixels
considered by p × p. Hence, it improves both the range and the speed of the
algorithm. Doing this, the range goes from [ 1

D
, 1] to [ p

D
, p].
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The optic flow thus computed is a rough estimate of the motion field, as it only
detects motions of D different amplitudes in eight directions. Nevertheless, this
method entails only simple computations and proves to be less time-consuming
and more robust than many other methods. Cobos and Monasterio[9] imple-
mented the corresponding algorithm on a FPGA, thus making the real-time
processing (25 images/second) of the optic flow on 100x100 pixel images pos-
sible.

3 Obstacle-avoidance

3.1 Biological inspiration

Flying insects, such as houseflies or bees, have sensory-motor abilities that still
outperform those of UAVs. Beyond their flying manoeuvrability, they benefit
from a reactive navigation system that enables them to wander in cluttered
environments thanks to on-line monitoring of the optic flow. In 1865, Von
Helmholtz explained how these animals are able to evaluate the distances of
lateral objects by using motion parallax and, since that time, numerous studies
have investigated the corresponding mechanisms. Srinivasan et al. [37], for
instance, have studied how bees call upon a centering response, which consists
in equalizing the optic flow on left and right sides, to fly in the middle of a
textured tunnel. Bees also exhibit a clutter response that allows their speed
to be adapted to the width of the tunnel by maintaining a constant average
motion [38]. Srinivasan et al. implemented the corresponding strategies on a
wheeled robot to demonstrate their efficiency [36]. Likewise, Franceschini et al.
[18] described how the organization of the compound eye of the housefly, and
how the neural processing of visual information obtained during the flight,
allow this insect to compute its distances to lateral obstacles and to avoid
them. This biological knowledge was exploited to implement opto-electronic
devices on several flying robots [28,30,39,17,31].

It also appears that other scientists have understood how other animals use
the frontal optic flow to estimate the so-called time-to-contact, i.e., the time
before a frontal collision is likely to occur. The gannet is supposed to use this
information when it quickly dives to catch a fish and determines the exact
moment when to fold its wings before entering the water [23–25]. Camus [6]
has implemented the corresponding strategy on a wheeled robot.
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3.2 The high-level obstacle-avoidance controller

In the following, we use the helicopter’s body-frame to refer to a point (x, y, z)
in the environment and the classical image-frame to refer to a pixel (i, j).
The Focus Of Expansion (FOE), which is the projection of the direction of
the helicopter onto the image, is taken as the center of the image frame.
Parameter f refers to the focal length of the camera. We will use symbols

−→
M

and
−→
V , respectively, to distinguish between motion on the image plane and

velocity in the environment.

The component of the optic flow that is required to avoid obstacles is generated
by a forward translation Vx of the observer. In this case, the horizontal motion
Mh of an object is proportional to the inverse of its distance to the observer.
From Fig. 5, the following relationship may be derived:

h

Y
=

f

X
(2)

As the low-level controller prevents the helicopter from skidding aside, we
make the assumption than the lateral velocity Vy is null. After differentiating
with respect to time, the above equation becomes:

ḣ = −f.Y.
( Ẋ

X2

)
(3)

Substituing h.X
f

for Y and replacing Ẋ by −Vx and ḣ by Mh, one obtains:

Mh

h
=

Vx

X
(4)

Replacing X by d. cos β, where β is the relative angle of the perceived object,
it finally appears that horizontal motion Mh of pixels is given by the the
equation:

Mh =
h.Vx

d. cosβ
(5)

From Eq. (5), we can deduce that a strategy equalizing the perceived pixel mo-
tions will tend to maintain equal the distances to obstacles on both sides of the
helicopter. This strategy was called either the balance strategy in [12,13,11,14]
or the centering response in [38,4].
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Fig. 5. The helicopter in point O perceives obstacle P at a distance d with a relative
angle β. During a forward translation, any object in the environment is perceived
to be moving away from the center of the image (left figure). The obstacle on the
right being closer than the one on the left, its horizontal apparent motion is greater
and the helicopter must turn left.

According to Eq. (6) below:

∆ψtarget = kpsi.

(
M right

h − M left
h

)
(6)

in which M right
h and M left

h are the average horizontal motion of pixels on the
right and on the left, and kpsi is a proportionality factor, the helicopter must
turn according to a value proportional to the difference of motions measured
on both its sides to reduce this difference.

Furthermore, the high-level controller is endowed with a second reflex that
allows the robot to avoid hitting a wall directly in front of it, a situation in
which lateral optic flows are equal on both sides of the robot. This reflex calls
upon an estimate of the time-to-contact τ , a rough approximation of which is
sufficient to prevent the helicopter from crashing. If P designates a perceived
point, −→r its projection onto the image plane and

−→
Mr the motion of −→r , and

if r and Mr refer to the norms of −→r and
−→
Mr in the image frame (Fig. 6), we

can deduce Eq. (7) from Eq. (4), replacing h by r:

Mr

r
=

Vx

X
=

1

τ
= η (7)

Therefore, we may compute η by averaging this equation over every pixel of
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Fig. 6. Left: When the helicopter is facing an obstacle, the average horizontal optic
flows are equal on both sides. However, the frontal optic flow may be used to trigger
a U-turn reflex when η exceeds ηmax (see text). Right: When the helicopter in O

perceives a point P ,
→
r and

→
Mr are respectively the projection of P on the image

plane and its apparent motion.

the image (Fig. 6):

η =

(−→
Mr.

−→r
r2

)
(8)

where
−→
Mr.

−→r
r

measures the consistence of the detected motion
−→
Mr with the

theoretical radial expansion of the FOE.

The η value, the inverse of τ , informs about the risks of a frontal collision.
If η exceeds ηmax, then such a collision is likely to occur, and the high-level
controller triggers a U-turn, V target

x being set to zero to reduce this risk during
the manoeuvre. As the helicopter reminds blind and does not make any de-
cision meanwhile, the controller used in this work implements a subsumption
architecture [5] according to which the U-turn reflex has a higher priority level
than the balance strategy. Moreover, as the optic flow algorithm can detect
motions in only a limited range (from p

D
to p pixels), care must be taken to

avoid pixel motions going beyond these bounds. As the horizontal pixel mo-
tion is proportional to the ratio Vx

d
, the longitudinal speed Vx must be adapted

to the average distance to obstacles. The more cluttered the environment, the
slower the robot must fly, and vice versa. Furthermore, this behavior will con-
tribute to increasing the survival capacity of the helicopter because it will slow
it down in dangerous zones. For this purpose, we modulate V target

x according
to:

∆
(
V target

x

)
= kVx

(
ηtarget − η

)
(9)
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where kVx is a proportional factor and ηtarget is the value we want η to stay
close to.

The strategy just described works if the helicopter’s displacement is a for-
ward translation. Unfortunately, the rotational component of the optic flow
does not depend on distance and, therefore, corrupts the measurement of the
translational component. This is why, in a previous work [29], we draw inspi-
ration from the zig-zag flight of the housefly and implemented a helicopter
controller that alternated strict straightforward flight periods - during which
valid control decisions could be made - and tight-turn periods - during which
no decisions were made. Although this controller led to acceptable results,
it has been improved here to relax the constraint of straightforward flight
periods.

3.3 Compensation for the rotational component of optic flow

Actually, if the housefly seems to be shortening its turning periods as much
as possible, it nevertheless does not give up any control ability and uses the
inertial information provided by its halteres to compensate for the rotational
component of the optic flow. To implement such a solution, we used the balance
strategy defined by Eq. (6), according to which the helicopter was free to move
forward and skirt around obstacles, while blind periods were restricted to
occasions when U-turns were triggered. As for the optic flow, it was managed
according to the following rationale.

The Coriolis equation of a moving coordinate system, with translational ve-
locity

−→
V helicopter and rotational velocity

−→
Ω helicopter, results in a motion

−→
V p of

a point
−→
P in the environment with respect to this coordinate system:

−→
V p = −−→

V helicopter −−→
Ω helicopter ×−→

P (10)

with:

−→
P = (Px, Py, Pz) (11)

−→
V helicopter = (Vx, Vy, Vz) (12)

−→
Ω helicopter = (ωx, ωy, ωz) (13)

From Eq. (10), knowing
−→
V p and

−→
Ω helicopter, one may deduce the translational

component
−→
V helicopter that is needed for obstacle-avoidance. To this end, we use
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a pinhole model of the camera: the projection of a point
−→
P in the environment

onto a point −→r on the image plane (Fig. 6) leads to:

−→r =
f

Px
.
−→
P = (f, ri, rj) (14)

Projecting the motion of
−→
P onto the image plan leads to the velocity

−→
M r of

the point −→r on the image plane:

−→
M r = f.




−Vy+ri.Vx

Px
+ ωy(ri.rj) − ωz(1 + r2

i ) + ωx.rj

−Vz+rj .Vx

Px
+ ωy(1 + r2

j ) − ωz(ri.rj) − ωx.ri


 (15)

Because the low-level controller prevents the helicopter from skidding aside,
the lateral velocity Vy can be set to zero. We can also consider Vz as null
because the helicopter flies at a constant altitude. The above equation can be
accordingly simplified:

−→
M r = f.


 ri.Vx

Px
+ ωy(ri.rj) − ωz(1 + r2

i ) + ωx.rj

rj .Vx

Px
+ ωy(1 + r2

j ) − ωz(ri.rj) − ωx.ri


 (16)

Let the following be defined:

−→
M

trans
= f.

Vx

Px
.


 ri

rj


 (17)

and:

−→
M

rot
= f.


ωy(ri.rj) − ωz(1 + r2

i ) + ωx.rj

ωy(1 + r2
j ) − ωz(ri.rj) − ωx.ri


 (18)

−→
M

trans
is another expression of Eq. (5), the information we need to avoid

obstacles. The motion field is a simple summation:

−→
M =

−→
M

trans
+
−→
M

rot
(19)

In our approximation of the motion field through an optic flow extraction
algorithm, pixels that appear non-moving are not reliable because they may
actually be moving too quickly to be detected. We consequently do not take
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these pixels into account. On the contrary, for each moving pixel, we compute−→
M

rot
and subtract it from the optic flow measurement to estimate

−→
M

trans
.

At this point, we use Eqs. 6, 8 and 9 at each time step of the simulation to

secure a reactive behavior. Introducing a low-pass filter on η, M right
h and M left

h

(see Fig. 2) makes the resulting strategy more efficient, even if it adds a delay
in the control loop. We use a simple linear first-order filter:

Afiltered = α.A + (1 − α).Afiltered (20)

with: α = 0.075 and A being one of the three values to be filtered.

Finally, we also use a PID module (Balance PID in Fig. 2) in the computation
of ∆ψtarget so its derivative component dampers possible oscillations.

4 Experimental results

The controller described above has been put to work in three different urban
environments. They are enclosed within 100m-wide cubes, while the main ro-
tor of the simulated helicopter has a length of 150 cm. They are closed by
detectable walls, thus making it possible for the helicopter to wander inside
for a long time if no crash occurs. One hundred experiments, lasting five min-
utes each, were performed in each environment. The starting point of each
such run was a randomly-chosen position, with no frontal obstacle nearby.
The first environment includes six buildings which cover around 20 percent
of the ground surface. The second environment includes 11 buildings covering
around 30 percent of the ground surface. The third environment includes 18
buildings covering around 40 percent of the ground surface. In each environ-
ment, different textures were associated with the walls of each building.

We used a simulated camera with a field of view of 60 degrees, with a real-
time quantized optic flow algorithm using a D value of 10 steps, a 3× 3 patch
Pv and a p parameter of 4 to pool pixels into blocks. A visual input flow of
25 simulated images of 256 × 256 pixels per second was thus generated and
served to control the helicopter (Fig. 7). Finally, the noise that was added to,
or subtracted from, each input value was drawn from a normal distribution,
with a mean of 0 and a standard deviation of 0.1 m for Vx and Vy, 0.25 m
for Z, and 1 deg for φ, θ and ψ. These values are expected to correspond to
measurement errors of usual sensors.

Under these conditions, it appears (Tab. 1) that the helicopter never hit an
obstacle in the three environments. Concerning velocity control, the average
velocity of the helicopter decreased with the number of obstacles from 1.06

13



Fig. 7. The left image represents the simulated environment. The central image
indicates the velocity: clearer pixels move faster. The right image shows horizontal
motions detected by the optic flow algorithm: black pixels are not moving, light-grey
pixels are moving towards the left, dark-grey pixels are moving towards the right.

env. 1 env. 2 env. 3

survival rate (%) 100 100 100

average velocity (m/s) 1.0630 0.9831 0.7377

standard deviation of velocity (m/s) 0.3017 0.2504 0.2011
Table 1
Experimental results obtained in three different environments. 100 experiments,

lasting 300 seconds each, were performed in each environment.

m/s in environment 1 to 0.74 m/s in environment 3. The survival rate indicates
that the high-level controller succeeds in adapting the helicopter’s velocity to
its local environment, confining it to a range (from p to p

D
) where the optic

flow extraction algorithm works correctly. The standard deviation of velocity is
closely linked to the standard deviation of the mean obstacle distance: in clut-
tered environments, this value remains relatively constant and low, whereas,
in less cluttered environments, it ranges from high values - when the robot
is in an open space - to low values - when the robot reaches a corridor or
approaches a wall. Fig. 8 illustrates the controller’s ability to slow down in
cluttered environments and to speed up in open spaces. Similar information is
provided by Fig. 9, which describes how the average velocity changes in each
location on the map.

Likewise, Fig. 10 shows that the helicopter’s trajectories remain close to the
skeleton of each environment i.e., to the set of points equidistant from sur-
rounding obstacles. Fortunately, this is particularly true in the most cluttered
environment. In open spaces, the obstacles may be far away, preventing the
system from detecting many moving pixels. In these cases, the resulting deci-
sion is less reliable, and the helicopter is less committed to remaining near the
skeleton. However, as shown above, this behavior does not affect the survival
rate.
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Fig. 8. Two specific trajectories among one hundred are illustrated in each environ-
ment, S being the starting position. The helicopter is able to make U-turns and to
escape from dead-ends. As the grey-level of the trajectories shown is proportional
to the current speed, they demonstrate that the helicopter slows down in cluttered
regions and speeds up in open spaces.

Fig. 9. Average velocity in each position, calculated over 100 runs in each environ-
ment. Greater velocities correspond to light-grey pixels.

Finally, in order to estimate the robustness of our controller with respect
to sensor errors, 5 series of 20 experiments using different noise levels were
performed in environment 3 - the most cluttered. To this end, the nominal
standard deviations values given above were multiplied by an increasing noise
factor and the corresponding survival rate and average survival time were
recorded (Fig. 11). It thus appears that, with twice the nominal noise level,
no crashes still occur. It is only beyond unrealistic noise levels, attaining or
exceeding three times the nominal values, that crashes cannot be avoided.
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Fig. 10. Average presence of the helicopter in each position, calculated over 100 runs
in each environment. Greater presence corresponds to light-grey pixels.

Fig. 11. Experimental results obtained in environment 3 with different noise levels.
Left: survival rate. Right: average survival time. Abscissae represent the noise factor
by which nominal values are multiplied.

5 Discussion

The system described herein calls upon an on-line monitoring of the optic
flow and makes safe and adaptive helicopter flights possible, even in cluttered
urban environments. This is partly due to the use of the real-time quantized
algorithm, which calls upon simple computational principles and proves to
be less time-consuming and more robust than other approaches we tried to
implement. This is also due to the compensation of the rotational component
of the optic flow, which allows higher speeds and smoother trajectories than
the implementation of any zig-zag strategy. It turns out that the latter result is
mostly due to the right tuning of the ηtarget parameter. Indeed, increasing this
value too much would lead to some crashes during U-turns because, V target

x

being set to zero, the PID modules on Vx and ψ would not be efficient enough
to prevent the helicopter from leaving its flight envelope 6 .

6 i.e., the state variables domain in which the aircraft must remain in order to be
controllable.
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In its current stage of development, the control system described here is rather
simple. Being inspired by behavior-based robotics [2] and the work of Gibson
[19,20], it tends to minimize the information acquisition and processing nec-
essary to control the implemented behaviors. In particular, it does not require
managing the kind of internal representations that would be necessary for cog-
nitive mapping, self-localisation and trajectory planning, for instance [15,27].
However, with the help of an additional GPS module, it could easily be en-
dowed with goal-directed navigation capacities, as demonstrated by the work
of Duchon[11]. The solution would be to add a bias γ to Eq. 6, which would
become:

∆ψtarget = kpsi.

(
M right

h − M left
h

)
+ γ (21)

where:

γ = β × perc ×
(
1 − Σ

a

)
(22)

Variable β designates the bearing of the goal with respect to the direction of
the helicopter, and may be deduced from the GPS information. To prevent
the helicopter from turning instantaneously toward the goal, only a given
percentage perc of β is used to modify the current direction. Likewise, to
avoid aiming directly at a goal that is on the other side of a wall, the value of
Σ, i.e., the sum of the norms of the detected motions, is taken into account.
As a is an appropriately scaled constant, the term

(
1 − Σ

a

)
is necessary to

balance obstacle-avoidance reflexes and goal-directed behaviors. In dangerous
situations, the helicopter will be able to turn away from the goal because,
when Σ increases, γ decreases.

Several other research efforts have aimed at implementing biomimetic visual
controllers on simulated or real UAVs. In particular, Neumann and Bülthoff
[32–34] designed a simulated UAV which was able to stabilize its attitude and
avoid obstacles thanks to optic flow computation in a spherical field of view
using Elementary Motion Detectors (EMD) that are inspired by the housefly’s
visual system. However, the corresponding simulation, unlike ours, does not
take inertia into account, which is acceptable for very small platforms with a
low Reynolds number, such as insects, but is not realistic for larger aircrafts.

Franceschini et al. [18,28,39,17,31] also apply EMDs inspired by the house-
fly’s to control real flying engines. However, the environments they use are
equipped with black and white stripes perpendicular to the direction of mo-
tion detection, thus affording high contrasts and reliable estimates of optic
flow. Moreover, the control laws they designed concern one degree of freedom
only, as the corresponding engines are tethered to a rotating support and can
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only change their altitude. Reiser and Dickinson’s approach [35] is very simi-
lar and implements EMD-based mechanisms for saccade initiation and visually
controlled translational velocity in a gantry fly moving in a highly-contrasted
experimental setup. As of today our system has been tested in simulation only,
but it deals with more degrees of freedom and more challenging environments
than those just quoted.

In a general review of biomimetic visual sensing applied to flight control,
Barrows et al. [4] report that they used a biomimetic visual sensing approach to
control the altitude of a real helicopter. They also mention that they developed
an autopilot fusing optic flow measurement and inertial information to detect
nearby objects. However, too few details are provided to make a comparison
with the results presented here possible. Nevertheless, this review strongly
suggests that the technology advocated here has already been successfully
implemented on real flying platforms.

Subsequent work will be aimed at filling the reality gap and at implementing
this control system on a Concept 60 SR II engine, for which several charac-
teristics of the simulator were specifically tailored. Moreover, great care has
been taken to capitalize on simulated sensors that are easily available off the
shelf. In a first stage, the controller will be tested with images acquired dur-
ing real helicopter flights, as done in [22], to check the efficiency of the optic
flow processing and to assess whether on-board vibration problems need to
be solved. Later work will be dedicated to coping with air turbulences, which
are notoriously difficult to simulate realistically when urban environments are
concerned.

6 Conclusion

This work describes how a bio-inspired vision system, which monitors optic
flow in real time, can be used to control the flight of a simulated autonomous
helicopter in an unknown urban environment. The corresponding controller
takes inertial information into account to separate the rotational and lateral
components of the optic flow. This implementation generates cautious behav-
ior, whereby the helicopter tends to stay in the middle of narrow corridors,
while its forward velocity is automatically reduced when the obstacle density
increases. Moreover, when heading into a frontal obstacle, the controller is
able to generate a tight U-turn that ensures the UAV’s survival.

When compared to related works, the simulations described here prove in
some ways more realistic than other approaches where real helicopters were
used, but with prepared environments and/or freedom restrictions. More-
over, it seems that no convincing reports of the successful implementation
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of obstacle-avoidance mechanisms on an autonomous real helicopter have yet
been published. This will be the objective of our future work.
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