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Abstract— Our goal is to demonstrate the ability of bio-inspired
techniques to solve the problem of piloting an autonomous 30-
gram aircraft within textured indoor environments. Because
of severe weight and energy constraints, inspiration has been
taken from the fly and only visual and vestibular-like sensors
are employed. This paper describes the models and algorithms
that will be used for altitude control and obstacle avoidance,
mainly relying on optic flow. For experimental convenience, both
mechanisms have first been implemented and tested on a small
wheeled robot featuring the same hardware as the targeted
aircraft.

|. INTRODUCTION

Our goa is autonomous navigation of a 30-gram indoor
plane [11] in a square arena of about 16 by 16 meters at the
speed of 2m/s. It should fly straight when no wall isin front of
it, engage in a preprogrammed turn whenever afrontal obstacle
is detected, and maintain altitude above ground. Because of
severe weight and energy constraints, distance sensors (such
as active infrared, sonar, and laser range finder) cannot be
used on such an aircraft. Visual sensors represent a good
aternative because they can be light-weight and low-power.
But how can we retrieve distance information from the image
stream? To answer this question, we take inspiration from
flying insects, which are known to rely on optic flow (OF)
for navigation. OF is the projection of 3D point velocities
onto the imaging surface. Flies move through the environment
by means of a series of straight trajectories separated by rapid
turns, known as saccades. There is evidence that frontal image
expansion (rate of OF divergence) is the signal triggering
each saccade [16]. It has also been shown that honeybees use
ventral image velocity to control landing [15]. In a stationary
environment, OF on the retina is produced by translation and
rotation of the agent. Only OF due to trandation (TransOF)
contains information on distance from objects in the scene.
From the point of view of distance estimation, rotational optic
flow (RotOF) is a spurious signal, which contaminates the
motion field. This is probably why flies move on straight
trajectories between saccades and also use a gaze stabilization
mechanism based on halteres (gyroscopic sensors sensitive to
angular velocities about the roll, pitch and yaw axes) [8]. In
this paper, we highlight the interference between RotOF and
TransOF and suggest a method to achieve efficient distance
estimation.

The indoor aircraft is equipped with two 1D cameras (one-
dimensional array of pixels) and miniature gyroscopes for

RotOF cancellation. One camera looks forward horizontally
(for frontal obstacle avoidance) and the other one downward
with its array oriented in the direction of motion (for atitude
control). OF is computed in real-time by an on-board 8-bit
microcontroller. Distances to walls and ground are estimated
using OF amplitude and field divergence, as suggested by
the biological mechanisms mentioned above. For experimental
convenience, we have first tested our approach on a small
Khepera robot fitted with the same electronic hardware used
on the indoor aircraft (microcontroller, camera, gyroscope).
The robotic platforms (Figure 1) as well as their equipping
hardware are described in [17].

Several similar investigations inspired by the vision-based
navigational behaviour of flying insects, have been carried out.
Terrestrial robots for obstacle avoidance [3], [6] or corridor
following (for a review, see [14]) have been developed, but
most of them either use wheel encoders for compensation of
interference due to RotOF or implement gaze stabilization.
Since flying robots have no contact with ground, our approach
cannot rely on wheel encoders. The tight weight budget (about
10g available for the sensors and microcontroller) aso pre-
cludes active camera mechanisms for gaze stabilization. Fur-
thermore, al the above mentioned robots, except the machine
based on analog-electronics by Franceschini and colleagues
[3], feature off-board image processing and control. A couple
of other projects on aerial robots also involve OF for naviga
tion. Specific studies on atitude control have been conducted
in simulation [7], in tethered helicopters [9], [12], and in
outdoor unmanned air vehicles[2]. Another work in simulation
[10] demonstrated full 3D navigation of a minimalist model of
an insect. Some preliminary trials of obstacle avoidance and
automatic landing have been made with an indoor plane [4],
but without taking care of RotOF interference.

Il. IDEAL OPTIC-FLOW PROPERTIES AND CONTROL
STRATEGIES

In this section, we first consider ideal patterns of OF as if
they were produced by ideal 2D cameras. In a second step,
we focus on the limited field of view (FOV) corresponding to
the 1D cameras equipping the robots in order to devise the
control policies that will be tested in Section IV.

The 2D OF field is the projection of the relative 3D veloci-
ties of the points in the environment onto the imaging surface.
For the sake of simplicity, we assume that the photoreceptors
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Fig. 1. Left. Our indoor slow-flyer able to fly at 2m/s with 1.3m turning radius. Right. Two Khepera robots, one equipped for frontal obstacle avoidance and
the other for lateral wall following. MEMS gyroscopes for yaw rotation detection are visible on the top turret, below the cameras.

of the vision sensor are arranged on a sphere with unit radius
(Figure 2, left). Each of them defines a viewing direction
indicated by the 3D unit vector d(«, ), which is a function
of the azimuth ¢y and elevation 6. The 3D motion of a rigid
body can always be characterized unambiguously by a 3D
translation vector t and a 3D rotation vector r (describing the
axis of rotation and its amplitude). When the vision sensor
is moving in a stationary environment with translation t and
rotation r, the OF field p(v, #) can be described by [5]:

p(.0) = —— GRS < do)
OF = TransOF +ROtOF
)

where D(v,0) is the distance between the sensor and the
object seen in direction d(v,9). Although p(v,9) is a 3D
vector field, it is by construction tangential to the sensor
surface. OF field is thus generally represented by unfolding
the spherical surface into a Mercator map (see for instance
Figure 2, right-most panel).

It is important to notice that OF is a sum of two dis
tinct components (see for instance Figure 2, right graphs).
The first one, TransOF, is due to trandation and contains
information about distances from obstacles, while the second
one, RotOF, is produced by rotation and does not depend
on distances. From Eq.1 we see that TransOF amplitude is
inversely proportional to distance D(v,0). Therefore, if the
trandlation is known and the rotation is null, it is possible to
estimate that distance. However, it is quite common in free-
maneuvering agents that RotOF overwhelms TransOF, thus
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Fig. 2. Left. Ideal sphere model of the visual sensor. Right. OF maps from
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making extraction of distance information difficult.

Our agerial robot is intended to fly along straight trajectories
interspersed with predefined turning actions. However, it is
not possible to ensure absolutely null rotation during straight
motion. For instance, whenever an attitude (pitch and roll)
correction has to be performed for maintaining altitude, the
plane will rotate about its pitch axis, generating some RotOF.
We therefore continuously deduce RotOF for each camera
using information coming from a MEMS gyroscope, whose
axis is oriented perpendicularly to both the camera viewing
direction and the line defined by the photoreceptor array.
Gyroscopes provide a functionality similar to that given by
halteres in insects.

Having discounted RotOF, we can now concentrate on
typical TransOF patterns, as viewed from the plane. Figure 3
shows theoretical TransOF fields as computed from Eq.1 for
ideal 2D cameras with 120° FOV. Also indicated in dashed
line on the center column graphs are the corresponding FOV
of the actual 1D vision sensors. Those aso have a FOV of
120° but only in one dimension. The FOV is divided into four
regions for average OF estimation, as explained in Section Il1.

When the plane is moving toward a textured wall, the
field is divergent with an amplitude inversely proportional
to the distance, as shown in the right column of Figure 3.
This information can be used to trigger a turning action in
order to avoid the wall. However, TransOF is relatively small
around the focus of expansion, in the center of the image.
Therefore we suggest to take the difference between right-
most and left-most regions as the criterion for triggering the
turning action. This difference, which is a rough estimate
of the OF divergence, is independent of the angle at which
the plane approaches the wall, as can be seen by comparing
the curves labelled OFDiv in the first and second row of
Figure 3. Therefore, it can be used as a robust measure to
trigger an avoidance behavior. The third row of Figure 3
illustrates the situation for a ventral camera. In this case,
all vectors are oriented in the same direction and maximum
amplitude is located in the center of the camera where the
photoreceptors have the minimal distance from the ground.
Since TransOF amplitude is inversely proportional to atitude,
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Fig. 3. Ideal patterns of OF as viewed from fictitious 2Dcameras with 120° FOV. a) Frontal approach toward a wall as viewed by a frontal camera. b)
Same as previous but with an oblique angle of approach of 3C°. c) Ventral camera looking downward and OF generated at different altitude. The first column
depicts the camera position and orientation as well as the airplane trajectory. In these examples, the aircraft is flying at 2 m/s in pure forward translation. The
second column gives snapshots of the typical OF patterns occurring in each situations. Indicated with dashed rectangles are the four regions corresponding to
the 1D vision sensors used on the robots. The third column shows the OF amplitude as a function of the distance from the wall and from the ground at the
center of each of the four sections (-45°, -15°, 15°, and 45°). The curves labelled OFDiv (for OF divergence) are simply the difference between right and

left-most regions.

it is possible to control altitude of the plane by maintaining a
given TransOF amplitude for the ventral camera. However, the
locus of maximum TransOF corresponding the perpendicular
distance from the ground depends on the pitch angle of the
aircraft (not shown in Figure 3). Therefore, we suggest to take
into account only the region where the TransOF is maximum,
so that when the airplane is pitching (when going up and
down) the minimal distance direction is automatically selected.

I11. MINIMALIST OPTIC-FLOW DETECTOR

Many methods for computing OF have been proposed [1],
ranging from feature tracking to gradient- or energy-based

schemes, but most of them are computationally demanding
and therefore not suitable for a low-power microcontroller.
Srinivasan proposed an image interpolation technique [13]
that does not involve tracking of features, nor does it require
measuring image velocity at a number of different locations.
Instead, the parameters of global motion in a given region of
the image can be estimated by a single-stage, non-iterative
process, which interpolates the position of the moving image
in relation to a set of reference images.

If I(n) denotes the grey level of the nth pixel in the 1D
image array, the agorithm computes the amplitude of the
transation s between an image captured at time ¢, I;(n), and
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Fig. 4. Left. Test setup with the Khepera spinning in the middlie of a 60 by 60cm arena with random black and white patterns. Center. Values read from
the gyroscope (solid line with circles), related standard deviation of 1000 measurements for each rotation speed (dashed line with circles), and OF values
estimated using 48 pixels (solid line with sguares), related standard deviation (dashed line with squares). Right. Average standard deviation of OF for different

size of FOV.

a later image captured at time ¢ + 1, ;41 (n). It assumes that,
for small displacements of the image, I,+1(n) can be approx-
imated by le(n), which is a weighted linear combination
of the image I;(n) and two shifted versions I;(n & k) of the
same image:

Liin—k)—L(n+k)

o SC)

where k is a small reference shift in pixels. The image

velocity s is then estimated by minimizing the mean sgquare

error E between the estimated image ft+1(n) and the actual
one I;1(n), with respect to s:

ft+1(n) = It(’I'L) + s

0°/s), and that OF is amost as good as the gyroscope at
estimating rotational velocities. These measures support our
earlier suggestion of cancelling RotOF by simply subtracting
a scaled version of the gyroscope value from the global OF.
In order to estimate the OF in different subregions of the
FOV (as required by the strategies described in Section 11),
Eq.4 must be applied severa times to different groups of
pixels. To assess the dependence of OF estimate accuracy on
the region size, the same experiment as above was reproduced
while varying the FOV and related number of pixels (see
Figure 4, right). Based on those results, we chose a division
into 4 regions (with 30° FOV and 12 pixels each, as outlined
by dashed rectangles in Figure 3, center column) as a good

o 2 dE trade-off between resolution and accur of OF estimates.
E = Z [It+1(n) - It+1(”)} , and 2 =0 ©) o
IV. EXPERIMENTAL RESULTS AND CONCLUSION
I — 1 Liin—k)—ILi(n+k
5= %Zn[ er1(n) = L()] [Ti(n — k) — Ii(n )]. (4) In this paper, we assume that the plane is able to fly

> Li(n = k) = I(n + k)]

In our case, k£ has been set to 1 such that the reference
images I;(n+ k) are simply produced by shifting the acquired
image by one pixel to the left and to the right, and s is taken
as the estimation of the OF. Eqg.4 has been implemented in
an 8-bit microcontroller with no floating-point capabilities.
At each sensory-motor cycle of the robot (lasting 45ms), two
images corresponding to I;(n) and I;1(n) are grabbed with
an interval of 9.5ms. The image processing itself lasts 1.6ms.
In order to assess this agorithm, we put the Khepera robot
equipped with a frontal 1D camera in the center of the arena
(Figure 4). By letting it rotate on the spot, the resulting image
motion is a pure tranglation. The obtained OF compares very
well with the gyroscope value, which gives an information
about the same movement. The center graph illustrates the
perfect linearity of the OF values with respect to the rotation
speed. More striking is the similarity of the standard deviations
between the gyroscope measurements and OF estimates. This
indicates that most of the noise, which is indeed very small,
can be explained by mechanical vibrations of the Khepera
(this is aso why the standard deviation is amost null at

amost straight and at constant speed. This can be achieved
by passive roll stabilization with wing dihedral and active yaw
control with a yaw gyroscope. Although it is not possible to
exclude small corrections generating RotOF during straight
sequences, the cancellation mechanism described above will
remove spurious signals. For now, we also assume that it
is feasible to pre-program a series of commands to let the
aircraft engage a blind turn of about 90° without significantly
atering its dtitude and resume normal straight flight after-
wards. These mechanisms are not tackled in this paper and
we only concentrate on frontal obstacle detection and atitude
control during straight sequences. Restricting the problem that
way alows for testing the control mechanisms proposed in
Section |l on the wheeled robot (A) by letting it go straight
forward at constant velocity and initiating pre-programmed
turns whenever an obstacle is detected in front of it and (B)
by implementing a wall following behavior, which is similar
to altitude control (when looked at from above), where the
heading direction of the Khepera stands for the pitch angle of
the airplane. This is an approximation of what could happen
in the air and it allows to assess the behavioral relevance of
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Fig. 5. Left. OF-based obstacle avoidance in the 60x60cm arena shown in Figure 4 (Khepera equipped with frontal camera). Top right. 120cm long setup for
wall following experiments (Khepera with lateral camera). Bottom right. Wall following results (3 trials). The black circle indicates the robot initial position.

Trajectories are reconstructed from odometry data

the proposed control mechanisms and their feasibility in terms
of hardware implementation and real-time requirements.

Figure 5 illustrates the results of these two experiments.
In order to ensure a good similarity between winged and
wheeled robots, we adapted the velocity and environment size
of the Khepera. Since the speed and characteristic size of
the environment are in a ratio of 8:1 for the airplane, we
chose a ratio of 6:1 for the Khepera because of its simpler
dynamics. These considerations led to an arena size of 60
by 60cm and a standard speed of 10cm/s for the Khepera.
In experiment (A), the rotation direction of turning actions
were determined by the asymmetry between left-most and
right-most OF, i.e., the Khepera turned away from the largest
OF value (see Figure 3, second row). This strategy is also
supported by biological evidence [16]. The robot never crashed
into awall during 60’ 000 sensory-motor cycles (corresponding
to about 45 minutes of continuous operation) where 84% of
time was engaged in straight motion and the remaining 16% in
turning actions. Furthermore, the algorithm is robust to change
of illumination and of the patterns on the walls. In experiment
(B), the wall following control (Figure 5, bottom right) has
also proved to be robust, even though the robot does not always
maintain the same distance from the wall. Nevertheless, these
experiments show that a very simple controller can produce
secure behavior in the sense of total collision avoidance.

In this paper, we showed vision-based obstacle avoidance
and altitude control using very limited resources. The electron-
ics used in these experiments, which are composed of a low-
power 8-bit microcontroller, two sets of miniature 1D cameras
and MEMS gyroscopes, weigh only 7g, which is within the
payload of the 30-gram indoor slow-flyer.
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