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Abstract: We present a new control law for the problem of docking a wheeled robot
at a certain location with a desired heading. Recent research into insect navigation
has inspired a solution which uses just one environment sensor: a video camera.
The control law is of the “behavioral” or “reactive” type, in that no attempt
is made to observe the relative pose of robot and target, all control actions are
based on immediate visual information. Docking success under certain conditions
is proved mathematically, and simulation studies show the control law to be robust
to camera calibration errors.
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1. INTRODUCTION

It is currently very popular among roboticists
to draw inspiration from the animal kingdom
Arkin (1998); Bar-Cohen and Breazeal (2003);
Franz and Mallot (2000). This trend is termed
“biomimetics”. Robot navigation strategies thus
derived, often categorized as “behavioral” or “re-
active” robotics, aim at the construction of simple
control strategies which use direct sensory infor-
mation, rather than a structured environmental
model. Such strategies are essential when robots
must operate in a complex environment using
simple sensors. Frequently, a complete environ-
ment model would be difficult or impossible to
reconstruct with the sensed information.

In this paper we propose one such strategy for the
problem of positioning a wheeled robot at a cer-
tain location with a certain heading, i.e. docking,
using information provided by a video camera.
The kinematics of the robot are non-holonomic,
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so standard techniques of visual servoing (see,
e.g., Hutchinson et al. (1996)) cannot be directly
applied. We introduce a change of variables and
a camera space regulation condition which allow
solution of the problem via a relatively simple
nonlinear control law.

This paper draws on previous work in precision
missile guidance Manchester and Savkin (2004,
2002); Manchester et al. (2003); Savkin et al.
(2003). This work involved missile guidance with
an impact-angle constraint, and was built on a
combination of geometrical considerations, and
recent work in robust control and filtering theory
Petersen et al. (2000); Petersen and Savkin (1999).

The remarkable ability of honeybees and other
insects like them to navigate effectively using
very little information was a source of inspira-
tion. In particular, the work of Srinivasan and
his co-authors, explaining the use of optical-flow
in honeybee navigation (Srinivasan et al. (2000)
and references therein). His work has previously
prompted work on helicopter navigation Barrows



et al. (2003) and missile-guidance systems Manch-
ester et al. (2003).

A bee’s eyes are immobile and fixed focus, and are
not sufficiently separated for stereopsis to be of
any real use. With these sensors, and such minute
brains for processing, it seems that accurate esti-
mation of distances is quite beyond them. How-
ever, they still manage to make smooth landings
on surfaces, and find their way to and from the
hive, for example. Recent studies by Srinivasan
and others have indicated that sensing optical flow
is one of their most useful navigation tools.

Many studies have been done, but one particularly
striking example is the algorithm a bee uses to
land on a flat surface. The bee looks down at the
ground, and measures its optical flow, or angle-
rate. It is straightforward to show that, if it keeps
this optical flow constant, and keeps its vertical
velocity a constant proportion of its horizontal
velocity, it will make a smooth landing on the
surface. We refer the reader to Srinivasan et al.
(2000) for details.

Nature has evolved many such simple “vision-
space” strategies, keeping certain angles and op-
tical flows constant, which lead to effective be-
haviour in physical space (or configuration space).
The docking strategy we present is directly mod-
elled after these.

Most studies of this problem can be roughly
grouped into two approaches. One focuses on
the robot’s “configuration space”, i.e. the relative
positions and angles of the robot and target,
and perhaps obstacles, in the plane. All these
relations are assumed to be available to the control
law, and from them it chooses some desirable
path. Examples are found in de Wit and Sørdalen
(1992); Laumond (1998); Souères and Laumond
(1996); Kelly and B.Nagy (2003) and references
therein.

The method described in de Wit and Sørdalen
(1992) is similar in its approach to the method
presented in this paper, in that the aim is to
follow to a circular path. The main differences are
that, firstly, they assume a slightly simpler kine-
matic model (often termed the unicycle model),
and secondly, they are able to prove exponential
stabilization to the desired final location, but at
the expense of a control law which is more com-
plicated and requires more information.

The other main approach focuses on “camera
space” or “visual space”. It is no longer assumed
that the robot has access to the full configu-
ration, but only the image of the target (and
obstacles) as the camera sees them. Typically it
also knows how they ought to look if the goal
is achieved. From this information a control law
is assigned which drives the appearance of the

target towards its goal. That is, dynamics are
examined in camera space. Examples of this ap-
proach are found in the papers Santos-Victor and
Sandini (1997); Hashimoto and Noritsugu (1997);
Lee et al. (1999); Conticelli et al. (1999); Zhang
and Ostrowski (2002); Cárdenas et al. (2003) and
references therein.

Our paper can be seen as a blend of the
two approaches. A simple camera-space condi-
tion is defined which, if kept, leads to desirable
configuration-space trajectories.

2. PROBLEM STATEMENT

Our aim is to design a control law by which
a car-like vehicle may dock to a target point.
The information available to the control law is
consistent with the use of a video camera as the
main sensor.

We now described the kinematic model of the
robot, the measurements available to it, and fi-
nally give a complete definition of the problem
statement.

The relative position of vehicle and target is given
in polar form (see Figure 1). The vehicle’s position
is an extension-less point in the plane, and is
identified in a physical system with the mid-point
of the rear axle. The scalar quantity r is the range
between the vehicle and the target, and the angle
ε is the angle between the desired heading, and the
line-of-sight from the car to the target. These two
quantities can be thought of as polar coordinates,
placing the vehicle with respect to the fixed target
frame.

Two more angles are required to completely char-
acterize the state of the system. These are the
heading of the vehicle, and the angle of its steer-
ing wheels. The angle λ is the angle between
the vehicles current heading and the line-of-sight.
The angle φ is the angle of the steering wheels,
with respect to the centerline of the car, and is
controlled with the input u. The forward speed is
controlled with the input v.

The reason for this unusual representation of the
state will become clear later in the paper, when
the CNG Principle is described, and the control
law derived.

The state-space of the car-target system is then
the manifold R × T

3 of states (r, λ, ε, φ), where T

is the circle group: R mod 2πZ.

The equations of motion on this manifold are
given by the following differential equations.
These are given for a front-wheel-drive car. To
make our control law independent of the forward-
velocity of the car, the dynamics are derived with
respect to path length, not time.
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Fig. 1. System geometry

The change of variables ds = v cosφdt allows us
to pass from one representation to another

Hereafter, x′ denotes derivative of a variable x
with respect to path length s. The dynamics of
the states in this form are given below:

λ′ =
sinλ

r
−

tan φ

l
, ε′ =

− sin λ

r
, (1)

r′ =− cos λ, φ′ =
u

v cos φ
. (2)

Where l is the distance between the front wheels
and rear wheels.

We now discuss the measurements available. In-
spired by the elegant instinctual behavior of in-
sects, and the practical need for controlling ve-
hicles with simple sensors, we use a measure-
ment model consistent with a single video camera
mounted on the robot, and a simple optical flow
algorithm.

The main restriction felt with this model is that
the range to the the target, r, is not directly
measurable. Furthermore, in certain situations it
is unobservable, or weakly observable, from the
measurements we do have. For this reason we do
not use this quantity in our control law.

The angular position of the dock-target in the
field of view is the angle λ. The derivative of this
variable is the optical flow of the image. A simple
algorithm such as Srinivasan (1994), as was used
in Manchester et al. (2003), can calculate this
value with very little computation.

The angle ε must be known, as it is not an
environmental variable, but part of the problem
statement. Two possibilities of how it might be
calculated are: (a) Visual analysis of the dock-
target image may allow us to judge the angle
between the line-of-sight and the target-heading.
Or (b) If the target-heading is defined as an
abstract bearing, the heading of the vehicle could
be dead-reckoned and from this and the angle λ,

ε could be calculated. Detailed considerations of
this issue are beyond the scope of this paper.

Further to the information from the video camera,
we need some knowledge of the internal state of
the vehicle. Specifically, we assume knowledge of
the forward speed v, the angle of the steering
wheels φ and the distance between the axles l.

2.1 Complete Problem Statement

Our complete problem statement is this. To find
a control law of the form

u = f(l, φ, v, ε, λ, λ̇) (3)

such that range and angle error at final time, i.e.
r(T ) and ε(T ), are minimized Corresponding to
this, we make the following definition:

Definition 1. A docking manoeuvre is considered
perfect if there exists some finite time T such that

r(T ) = 0,

lim
t→T

ε(t) = 0.

A limit is used in the above definition because if
r = 0 the angle ε is undefined.

3. CONTROL LAW

From the optical flow measurements, we can can-
cel the component due to the robot’s rotation
(= v sinφ/l), and retain only the component due
to the relative motion of robot and dock-target.
We denote this remaining flow Of , so:

Of := λ̇ +
v sin φ

l
(4)

The control input u is then chosen as:

eh := λ − ε, ec :=
2Of

v cos φ
−

tan φ

l
, (5)

u := lv cos3 φ(aec + beh). (6)

Here we can think of eh as the heading error, and
ec as the curvature error, as the car describes a
path toward the target.

The gains a and b should both be positive, and
can be chosen with the following guidelines:

• The dynamics of the linear system e′′h +ae′h +
beh = 0 should represent suitable regulation
to the desired path,

• The range r0 := 2/a should be small enough
that divergence from the desired path within
this region of the target is acceptable.
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A discussion of the reasoning behind this control
law, and the tuning guidelines, is presented over
the next two sections.

4. CONTROL LAW DERIVATION

The method with which we arrived at the above
control law is slightly different than most previous
approaches. The control objective is to reach some
final state, but rather than trying to derive a
controller which provides some type of stability
to this state, our approach has two stages.

Firstly, simple geometry allows us to pass from
the terminal condition to a condition on the
instantaneous configuration of the vehicle, this is
what we call the CNG Principle. Secondly, from
this instantaneous condition we derive a feedback-
control law using methods similar to feedback
linearization.

The following theorem forms the basis of our
control law, and was proved in Manchester and
Savkin (2002):

Theorem 1. (Circular-Navigation-Guidance Prin-
ciple) Introduce the circle uniquely defined by the
following properties: The initial and final positions
of the vehicle lies on the circle; The desired final-
heading vector at the target’s position is a tangent
to the circle.

Suppose that a controller of the form (3) is de-
signed such that the angles λ and ε are kept
exactly equal over the full docking manoeuvre,
then the vehicle’s trajectory will be an arc on this
circle. Furthermore, this will result in a perfect
docking manoeuvre, as defined in Definition 1 2

�

This is visualized in Figure 2, where the point A is
the dock target position, and B the vehicle’s initial
position. BA, then, is the line-of-sight, and let

2 In Manchester and Savkin (2002) the definition of perfect

intercept was slightly different. However, in the case we

consider here it is equivalent to Definition 1.

AZ (equivalently BY) be the desired final-heading
vector.

Note that in the case where λ = ε = π and φ = 0,
the car is heading away from the target, and will
continue to do so forever. In a sense, the car is
following a circle of infinite radius: a straight line.

It is only in this case, corresponding to just a one-
dimensional line in a four-dimensional manifold,
where a perfect docking manoeuvre will not occur.
Since this is a “thin” set, and would be simple
to overcome in practice, we do not consider it
further.

In order to regulate λ to be equal to ε, we consider
two errors: λ− ε and λ′ − ε′. The second of these
can be expanded as follows, from Equations (1,2,
4):

λ′ − ε′ =
2 sin λ

r
−

tan φ

l
, (7)

=
2Of

v cos φ
−

tan φ

l
, (8)

giving us Equation (5).

This can also be interpreted in the following way:
Given any position of the car in the plane, relative
to the dock target, there exists a unique circle
it should follow. To follow this circle, it must
have a certain instantaneous heading and curva-
ture. There are then two errors worth considering:
heading error and curvature error. eh is obviously
the heading error, and ec is the curvature error.

This follows, since the curvature of the circle
defined in Theorem 1 is given by the function
2 sin λ/r, and the instantaneous curvature of the
vehicle is given by the function tan φ/l.

If both of these errors are zero, then the vehicle
will follow a circular path to the dock target. We
can think of these error functions as describing a
two-dimensional target sub-manifold of the four-
dimensional state-space:

M := {(r, λ, ε, φ) : eh = 0 and ec = 0)}.

Viewed like this, our objective is similar to that
of sliding-mode control: to regulate the system to
a particular sub-manifold on which it is known to
behave well.

So we have transformed the terminal-state con-
trol problem into an instantaneous-state control
problem, i.e. the regulation of eh and ec. This is
reminiscent of the way a honeybee can land on
a surface by regulating certain visual cues. We
now tackle this regulation problem in a way simi-
lar to input-output linearization (see, e.g., Khalil
(1993), Chapter 13), and analyze the resulting
control law using Lyapunov theory.



Let us choose the heading error, eh = λ− ε, as an
output function, and attempt to regulate it using
input-output linearization.

Differentiating eh with respect to path-length, we
obtain:

e′h =
2 sin λ

r
−

tan φ

l
= ec,

We differentiate this again, obtaining

e′′h =
2 cos λ

r
ec −

sec3 φ

lv
u. (9)

In this equation we note that the control appears
explicitly, so a natural approach would be intro-
duce a fictional control input ū and set

u = lv cos3 φ

(

−ū +
2 cos λ

r
ec

)

(10)

rendering the dynamics from ū to eh linear, in fact
just a double integrator. However, since the range
r is unknown to the controller, we cannot do this.

We then “almost feedback linearize” the system,
and treat the first term in (9) like an uncertainty.
The second term is canceled with the nonlinear
control law:

u = lv cos3 φ(aec + beh)

as given in Section 3, then we have

e′′h +

(

a −
2 cos λ

r

)

e′h + beh = 0. (11)

If r is large, this is “almost” like the linear system

e′′h + ae′h + beh = 0,

and it is clear that, by choosing a and b, both the
errors eh and ec = e′hcan be made to converge in
any desired fashion.

5. CONTROL LAW ANALYSIS

Since our control law only “almost” linearized
the system, we need some further analysis to
understand how the system will behave.

The following simple theorem says this: if we start
with zero errors, we will continue to have zero
errors and achieve a perfect docking manoeuvre.
Another way to put this is that if, at any time,
the state (r, λ, ε, φ) ∈ M then it will stay in M .

Theorem 2. Suppose the vehicle system (1, 2) has
the desired heading and curvature, i.e. eh(0) = 0
and ec(0) = 0, then the vehicle will perform a
perfect docking manoeuvre, as per Definition 1.
�

Proof of Theorem 2: It is clear from the equation
of the system (11) that, eh(t) = 0 and ec(t) = 0

at some time t, then they have been, and will be,
zero for all time. This implies, then, that λ = ε
for all time, and the claim follows from Theorem
1.
�

Now suppose the state starts outside M , that
is, with incorrect heading and curvature. Now
we’d like to know something about convergence
to the target sub-manifold. The dynamics of (11)
are those of a linear system with time-varying
coefficients, and can be analysed with Lyapunov
theory.

Theorem 3. Consider the function

V (eh, ec) := be2

h + e2

c . (12)

This is a positive-definite quadratic form in the
heading and curvature errors, and may be consid-
ered as the distance to the target sub-manifold.

Let [s1, s2], s2 > s1 be any path interval over
which V (eh, ec, s) 6= 0 and the following inequality
holds:

a − 2 cos λ/r > 0. (13)

Then V (eh(s2), ec(s2)) < V (eh(s1), ec(s1)). That
is, over any interval of non-zero length, the norm
of the errors strictly decreases. �

Proof of Theorem 3:

For the proof of this theorem, consider the fol-
lowing linear parameter-varying realization of the
system (11), with a state x = [ehec]

T :

x′ = Ax + Bw (14)

z = Cx. (15)

where

A =

[

0 1
−b 2 cos λ/r − a

]

, B =

[

0
1

]

, C =
[

0 1
]

.

Furthermore, consider the Lyapunov function
V (x) = xT Px where

P =

[

b 0
0 1

]

. (16)

The derivative of this Lyapunov function with
respect to distance travelled reduces to

V (x)′ = −2e2

c(a − 2 cos λ/r). (17)

Now, for any s in the interval [s1, s2], it follows
from V (eh, ec, s) 6= 0 that x(s) 6= 0. Since x is
observable from ec, it follows that

∫ s2

s1

ec(s)
2ds > 0,



and since inequality (13) holds, clearly

δ := 2

∫ s2

s1

ec(s)
2

(

a −
2 cos λ(s)

r(s)

)

ds > 0.

Now,

V (eh(s2), ec(s2)) = V (eh(s1), ec(s1))

+

∫ s2

s1

V (eh, ec)
′ds,

= V (eh(s1), ec(s1)) − δ,

< V (eh(s1), ec(s1)),

and the theorem is proved.
�

This theorem reflects the following physically
meaningful problem: When the vehicle is very
close to the desired target location, large gains
are required to make it swing around and track
the correct path.

It should be noted that if range is measureable, ei-
ther through some other sensor device, or through
vision-processing techniques such as stereopsis,
optical flow or image looming, this problem will
still be present. Indeed, suppose the control law
(10) were used, then as range decreased the gains
would be come extremely large, due to the 1/r
term. The actuator constraints on any real system
would thus prevent the exact feedback lineariza-
tion which is attempted.

6. ROBUSTNESS

It has been mentioned in the literature that a
particularly important test of a docking algorithm
is the robustness of its terminal positioning pre-
cision to imperfect modeling of the kinematics
and camera calibration (Cárdenas et al. (2003),
Laumond (1998)).

The parameters chosen for the simulation were:
l = 1m, v = 1m/s, a = 4, b = 4.04. The initial
conditions were r(0) = 7m, λ(0) = π/4 rad,
ε = π/4 rad, φ = π/8 rad.

These parameters imply that the area in which
the path could begin to diverge is approximate
2/a = 0.5m. Note that in all simulated cases, the
terminal positioning error was much smaller than
this.

In all the following simulations, the control law
is derived as above, as though all parameters
were nominal. We then simulate a system where
parameters are perturbed by some amount.

6.1 Camera calibration

Here we simulate the effect of incorrect camera
calibration. We skew the measurement of λ and

the optical flow in a way consistent with an
incorrect assumption on the focal length of the
camera. We introduce the ratio kf as the true focal
length divided by the assumed focal length.

This parameter was varied from 0.6 to 1.8. In
Figure 3 we see graphical plots of trajectories, and
numerical data for the final range and final-angle
error. It is clear that, although the trajectories
throughout the middle stage of the docking ma-
noeuvre vary widely, in all cases the robot docked
with less than 1cm positioning error, and less than
10◦ angle error.

6.2 Control input gain

We now move on to consider errors in kinematic
model, specifically, in the steering wheel system.
Firstly, we investigate what happens if the rela-
tionship between control input and steering-wheel
movement is not what we expect. Instead of the
assumed relation φ̇ = u, we instead simulate the
system φ̇ = kuu, where ku is unknown gain term.

Figure 4 depicts the trajectories and error data
as ku is varied from 0.2 to 5. It is noted that
increasing ku significantly, which means that our
control input is stronger than we expect, has little
effect on the performance of the vehicle. A larger
effect is observed when the control input is weaker
than expected, but performance is still very good.

Reducing it significantly (to around 0.2) results in
some large oscillations in the trajectory, and errors
in both final position and final angle. However,
reduction of ku even to 0.5, meaning our control
input is half as strong as we think, does not
significantly degrade performance.

6.3 Measurement of steering-wheel angle

The control law (4-6) depends explicitly on our
knowledge of the current steering wheel angle, φ.
In the next set of simulations we consider what
happens when this information is wrong. Suppose
φ is read by a potentiometer which is not tuned
correctly, so the resulting measurement is a fixed
gain of what it should be. Hence, in the calculation
of our control law we replace φ with kφφ.

Figure 5 shows the resulting trajectories as kφ is
varied from 0.6 to 1.4. Once again, it is seen that
the middle stages of the trajectory are strongly
affected, but the terminal errors remain quite
small. We note that terminal position was very
small for all cases, but as kφ got very large, the
angle error did increase notably.
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Fig. 3. The effect of incorrect camera calibration

6.4 Steering-wheel angle saturation

In the last set of simulations, we suppose that
the steering-wheel angle is restricted to be within
some range of angles. This will obviously be true
for many practical robotic vehicles, and essentially
results in a lower bound on the turning-circle
radius.

We represent this with the constraint |φ| ≤ φs.

In Figure 6 we depict four trajectories, and four
sets of terminal error data. These are for the
cases where, firstly, the steering wheel angle is not
restricted, and then when it is restricted by φs =
π/4, π/6, and π/8, respectively. In the first three
cases the saturation has little, if any, effect on the
performance. In the final case, the performance
was significantly degraded, simply because the car
could not turn around fast enough to get on the
right path.

These simulations show that the control law de-
rived above, which does not explicitly account for
steering-wheel saturation, does handle sufficiently
small levels of saturation without any degradation
in performance.

These four sets of simulations show promising
prospects for application of our control law when
kinematic and camera models are subject to large
errors. As has been said in the literature, an
important issue in docking problems is robustness
of terminal positioning, and in each simulated case
above remarkable robustness was observed.
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