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Robots can be used to test hypothesesin the neuroscience of sensorimotor control.
Some well explored systemsin invertebrates are particularly suited to such
implementations. Examples ar e discussed from visual motion perception, auditory
localisation, chemotaxis and escape behaviour. Theresults providea
complementary insight into under standing these complex systems, by providing a
real-world grounding and thus emphasising the contribution of the physics of

environments, sensors and actuator sto the control of behaviour.

If we understand hav a biological system works, it shoud be passble to buld
something that works the same way. Advancesin neurobiology have been accompanied
by advances in techndogy, and there is much interest in the posshili ty of designing
robas with the cagpabiliti es of animals. Invertebrate neuroscience in particular is
providing many neural ‘circuit diagrams that can pdentially be @mpied as snsorimotor
controll ers for robaics. While much of thiswork has atechnica focus, in some caes
the roba constitutes a means to test neuroscientific hypotheses, with results that can
feal back to biology. Thisreport describes some recent examples of such work and

discusses what can be leant.

One important way in which work in robaics can contribute to neurobiology is
by testing models of neural systems within the @nstraints of red sensing, tasks and

environments. Because neurobiologicd systems are cmplex, and modern modelli ng



methoddogies al ow the construction d ever more complex representations of them,
validation d models has beaome more problematic. It can sometimes san possbleto
reproduce whatever output is observed from the red system simply by tuning the many
parameters, adding extra wnnedions, or finding the right format for the model inpu or
output. It is necessary to find ways of constraining the model if we aeto have
confidence that reproducing the behaviour isreally a aiticd test of the underlying
hypothesis.

It is also worth kegoing in mind that producing testable predictionsis not the
only useful function d implementing models. A model is apowerful way to combine
and summarize data that may be gathering piecemed. Conrections and gaps can be
reveded in model building that otherwise may be overlooked. The logical adequacy of
hypaotheses to acourt for the datais smetimes reveded to be incomplete when they
are formali sed for modelli ng. Often alternative hypotheses present themselves during
model construction and the understanding of what a particular mechanism may be
cgpable of isimproved. In these respects, different kinds of models can dffer different
perspedives. Analyticd models provide dea statements and can often lead to useful
generali sation by drawing ou equivalencies between processs. Highly detail ed
simulations e.g. of neural biophysics, may focus attention onareas of missng data. A
physicd model, such asaroba, places the focus onthe complete problem, that is how
interadion with the world and neural systems mutually constrain each ather. A
consequence is that addresses how the enbodment’ and effect of actions on the
environment contribute to behaviour, rather than treating sensory processng as a
unidiredional information-extrading computation. Our view and interpretation o
neurobiological datais changed when we take amore hdli stic, task-oriented and

emboded view of what the neural circuitry isdoing.



Over the last decade there have been an increasing number of robas built to
explore biologicd ideas, ranging from lego models of pre-cambrian worms®® to
humanoids’. But as for other problemsin neuroscience, invertebrates have provided
particularly fruitful model systemsfor this approad. Thisis becaise we have in some
cases come dose to having afull understanding of the spedfic neura connedions that

underlie the production d particular motor resporses to particular sensory stimuli.
Insect visual control

One of the best studied areas in invertebrate neuroscience is the sensory system
underlying visual motion perception, so it isnat surprising that thisis also an areain
which anumber of robat models have been built i n recent years. Severa authors "4/
have speaulated onthe various ways we might exploit our understanding of the insect
for robdic, in particular how some rather simple but clever algorithms apparently used
by inseds could be adopted for controlli ng mohil e robas. Examples of implemented
systems include: balancing lateral visual velocities to move down the centre of a
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using the maintenance of a @mnstant angular velocity to slow down when
approaching atighter passageway, or landing place®®; and wsing peeing to extrad range
information?®. Such implementationsindiredly test the ficacy of the proposed
controllers as an explanation d the insed's behaviour; in what follows | will discuss

some examples of more explicit attemptsto use the roba in evaluating hypotheses.
Collision avoidance

A leading examplein thisfield was the work done & the end of the 1980s by
Franceschini and coll eagues®’. The am was to show how the implementation d insed-
like vision could provide amobhile roba with arapid and robust cgpabili ty to steer
through a complex environment. At the same time it was an investigation d how the

motion detedion system of the fly might be used to perform colli sion avoidance This



involved bah anaog hardware modelli ng of the neural circuitry thought to perform
motion detedion, and analysis of the information avail able from motion parall ax for
guiding movement. Franceschini et al*? nate that by the use of aroba they were "forced
to an utimate level of concretenessin speafying the design of the complete optomotor

loop' for thefly.

Theroba carried a mmpoundeye consisting of 100facets aroundthe horizontal
plane. The phaosensors were wired with lateral interadions to form elementary motion
detedors, copied from the fly. The layout of the visual axes of the sensors foll owed a
sine gradient from front to badk; this also resembled the fly and had the atractive
property of compensating for the sine law inherent in the optic flow field for forward
trandation. After ead tranglational step, the distance of obstades was extraded from
the flow field and used to determine arotation that would avoid olstades while
remaining as close & posgbleto the target direction. The resulting mechanism could

'dalom'’ theroba at 50 cm/s to atarget through arandam array of posts.

A problem that emerged from thiswork is that the range of effedive vision
deaeases as the visua axis approadhes the line of travel. In ather words, the roba or
animal will have troul e detecting obstacles directly ahead, obvously a problem for
motor control. A solutioninvestigated by Mura & Franceschini®*isto introducing a
scanning movement of the eye during the translation. Moreover, investigation d the fly
compoundeye motivated by this problem has suggested that it adually has amuscle and
tendonsystem that carries out scanning movements of this kind'.. In *® amicroscde
sensor based onthis principleis described. An alternative implementation d the same
basic concept isfor the roba to use azig-zag motion, i.e. periodicaly changing
diredion to compensate for the parall ax blindspat. Lewis?® suggests that such behaviour
isobserved in inseds and demonstrates that using it onaroba enables siccessful

navigation through afield of obstacles.



Optomotor and tracking response

Another spedfic hypothesis about the neurocircuitry of the fly visual motion system
was investigated in aroba model by Huber et a?*?% Flies show anumber of reflex
resporsesto visua stimuli. These include the optomotor reflex, producing torquein
resporse to largefield rotation, and a fixation resporse to averticd stripe. It has been
suggested that a common kehavioural modu e may underlie both these behaviours, that
is, they may make use of the same sensory circuit. In particular, the fixation could be
explained by the front-badk asymmetry in the resporse of horizontal cdlswhich
integrate the output of elementary motion detedors. Because the resporse to (randamly
generated) progressve motionis gronger than to regressve motion, the fly will end up

oriented towards the stripe.

Theroba implementation d this hypathesis uses a cnicd mirror above avideo
camerato get a 360-degree view, and samplesfive drcles along the horizon, averaging
verticdly to get 96 sensor inpus each with an aperture of 2.1 degrees. The signals are
spatially and temporally filtered by processes analogous to the large monopdar cellsin
the fly'slamina, motionis deteded using the Hassenstein-Reichardt model of
processng in the medulla and then integrated by a model of the widefield haizontal
cdlsinthelobuaplate. These signals are muded propationally to the motor resporse,
such that leftward visual movement produces leftward rotation and vice-versa, bu as
described abowe, the signal (and hencethe resporse) for front-to-back motionis
stronger than the signal for badk-to-front. With the normal optomotor stimulus of a
striped drum, these signals are balanced and the usual compensatory rotation to stabili se
the environment is en. With asingle stripe, the stronger turning for progressve

motion resultsin the roba orienting towards the stripe, and reli ably tradking towardsiit.

The results demonstrate that one visuomotor control mechanism can generate

both resporsesin the fly. The expressed behaviour depends onthe environmental



condtions withou there being any explicit recognition d the cndtions or switch
between the resporses. Thus the work onthe roba has provided a'criticd evaluation d

biologicd models (%%, p.227 inthisarea
L ooming response

Blanchard et al® used aroba to investigate adifferent behavioural subsystem of insect
vision, the 'looming resporse. In locusts, an evasion resporse is triggered when oljects
approaching on a olli sion course exceal athreshold visual angle. An identified neuron
- the lobua giant movement detector - appeasto be acriticd element of this
behaviour*”. A cameramourted ona miniature roba was used to provide input to a
model of the anatomicd and physiological organisation o this neuror*!. The resporse
of the neuron appearsto depend ona 'race’ between excitatory and inhibitory inpus,
such that only rapidly expanding visual stimuluswill exciteit. With ided stimuli, the
rate of firing of the neuron encodes the rate of approach of the stimulus. However it was
foundwith theroba, that even in arather smple environment, the variationin the
visua stimulus meant there was a grea deal of variancein the neura resporse,
sufficient to obscure the relationship between firing and approacd rates. Neverthel essit
was posshle to define athreshald firing-rate level for reading that enabled the roba to

avoid colli sions, abeit at varying distances from the obstades.

The results suggest that more redi stic stimuli nead to be used to corredly
characterise the neuron's resporse, bu aso that high accuracy in sensing isnat a
prerequisite for effedive behaviour in this case. A further isaue that arose from this
implementation is that when the roba reacts to avoid a @lli sion, the visual stimulus
during its readion can provide an inappropriate input to the wlli sion detedor. This
suggests there needs to be some kind o inhibitory or efferent-copy conredions within

the avoidance system.



Taxis

Many other sensory systemsin inseds are dso well studied and the neural
underpinnings ought. Behaviourally, a ammmon resporse to various €nsory signalsis
taxis, i.e. to arient to the sourcein order to findit. Many mobil e robas have been built
with generic taxis capabiliti es (particularly inspired by the ‘thought-experiments' in
Braitenberg®). Some of these robas have been designed to investigate spedfic

hypotheses about animal taxis.
Phonotaxis

| have been invalved in aseries of studies using aroba implementation to elucidate the
neural circuitry involved in auditory locdisaton and recognitionin the aicket 3%3549°1,
Female aickets can locate amate by moving towards the species gedfic song
produced by the male. The behaviour, neuroanatomy and neurophysiology of this

192038 'However to date

system have been studied for some years (e.g. seereviewsin
thereis not a omplete, well-spedfied modd of this system. The work onthe roba has
demonstrated ore plausible solution, consistent with the biological observations, that is
cgpable of producing the appropriate behaviour when tested in the same experimental

condtions as the animal.

The aicket's ears are mnrected by atradhed tube and thus function as presaure
differencereceivers. That is, the vibration d the ear drumsis the sum of direct and
delayed inpus and henceis dependent on relative phase which varies with soundsource
diredionfor agiven wavelength. The resulting vibration amplitude diff erence between
the easis neurally encoded bah in spike rate and spike onset latency. The tempora
pattern of the sound- consisting of bursts at a haracteristic rate - is also apparent in the

spike pattern of auditory neurons and interneurons. The issue then is how the



subsequent neural processng filters the pattern to recognise the song and compares the

diff erence between the ersto determine the diredion d the singer.

The solution propased in *°isthat the two tasks can be linked, by making the
locdisation circuit dependent on having the @rrect pattern. In fad, avery simple neural
network can be devised with the requisite properties™. An adapting synapse between the
auditory neurons and the motor neurons means the latter receive inpu only at the onset
of sound busts. This requires a burst repetition rate slow enough to be dealy coded by
the auditory neurons, but fast enough to all ow the summation d successve motor
neuron stimulations to read the threshald for resporse. Thus a bandpassfor the
repetitionrate is t, which corresponds to the parameters for ‘recognition’ established in
experiments on the aicket. Using crossinhibition, the side of first onset will suppress
the other side, and the motor output will thus generate aturn towards the louder or more

clealy patterned sound.

This neura circuit was implemented in a spiking neuron simulation that ran ona
roba equipped with an electronic model of the aicket's ears and capable of moving at
comparable speeds to the cricket. Testing it with red or computer generated cricket
song showed that it could tradk the sound, povided it had the crrect carier frequency
and bandpassrepetitionrate, i.e. it appeaed as €ledive athe aicket. Moreover,
testing the roba with two soundsources it was foundthat this system also appears
cgpable of 'chocsing' and tradking the louder or better song. Theseresultsraise a
number of isaues for the aicket neurophysiology, some of which are being examined,
such as whether first onset does determine turning direction, and hav much of the

filtering can be dtributed to inherent low-passproperties of integrating neurons.

In more recent experiments*® the phondaxis resporse has been combined with
an optomotor resporse generated by a hardware analog VLSI chip designed by

Harrison™ that mimics the optomotor visual processng of the fly described in the



previous fdion. Experiments on the aicket using combinations of auditory and visual
stimuli had suggested a simple alditive cmmbination d the two responses would explain
the behaviour. It was found, wing the roba, that thiswould na in fad suffice when the
system had redi stic feedback from its adions, particularly because the dynamics of the

two sensory systems differed.
Chemotaxis

Although tracking a dhemicd source might be cnsidered essentially the same problem
astradking asoundsource, in fad it differs substantially because of the nature of the
signal. Chemicas do nd usually disperse in asmoath gradient, but rather their dispersal
is determined by the movement of the medium - air or water - in which they are being
dispersed. The resulting ‘plume’ is typicdly directed, intermittent and turbulent. Hence a
simple mmparison between two spatially separated sensorsis likely to be inadequate to
reliably determine the turning diredion that will bring the animal or roba: closer to the
source This has been demonstrated at the dgorithmic level in experiments with a
'robdobster™®**. Thisroba is designed to operate underwater, in the same flow-tank as
the lobster. It is scaled to the lobster in bady size, spatial layout and resporse resolution
of the sensors, and speal and pattern of locomotion. Using only tropataxis -
instantaneous comparison d the cncentration ketween two sensors - the roba canna
eff ectively tradk a plume. It would appea necessary to include time-differentiation o

the signal and/or rheotaxis (up-stream orientation) to explain the animal's behaviour.

The neura underpinning of chemotaxis mechanismsis lesswell understoodthan
for the auditory or visual processng discussed thus far. Severa studies have thus looked
at this problem at the neural level by attempting to design, train or evolve asmall
network of model neurons to be capable of deding with the problems for areal roba
resporse. In work by Kuwana e a®®, the robat is actually equipped with the same

pheromone sensors as the moth it models. The antennae ae diseded from the male and
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attadhed by silver eledrodes to an amplifier circuit ontheroba, to detect the potential
difference acossthe antennae caused by the female pheromone. An eight neuron
reaurrent network is used to connect the sensors to the motors, and can be tuned by hand
or by evolutionary methods to produce the casting and turning behaviours described by

K anzaki®.

An exception to the 'plume-type stimulus for chemotaxisis given by the
experimental condtions used to test chemotaxis in the nematode worm. In this case, a
gradient of concentrationis establi shed from the center to the eldge of a petri dish, and
nematodes rel eased into the dish are observed to arient themselves up the gradient to
read the center. On the other hand, the nematode's anatomy means that it samples this
gradient esentially at one point only, urlike the spatially separated sensors of the
lobster or moth. This environmental interfacewas modelled in aroba by Morse ¢ al*®
using alight sourceto create the sensory gradient and a single nontdiredional i ght
sensor to deted it. They also modell ed the observed motor control of the nematode
which moves at anear constant speed and stees by the relative cntraction o muscles

on ead side of the head and reck.

The neura network used to control the behaviour isasimplificaion d identified
neural propertiesin the nematode. The neurons are non-spiking, and can be represented
asasingleisopaential compartment. They are further simplified by being made linea,
which makes analysis possble dthough at some lossof redism, e.g. the voltage-
dependenceof condwctances and nan-linea synaptic functions are not represented. The
network in the nematode is known to consist of chemosensory neurons, interneurons
and motor neurons which are highly interconreded. A model with ore sensory neuron,
threeinterneurons and two motor neurons (one for each side) was fully interconreded
and the parameters determined using a simulated anneding algorithm. The resulting

circuit could control the roba so as to approach the sensory source, and was robust to
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changesin speed or the aldition d turning bias. Analysis of the network enabled Ferree
& Lockery® to describe the functionin terms of a @wmputational rule that combines
klinotaxis (changing turning rate proportionally to the gradient of the stimulus) with
klinokinesis (changing turning rate in resporse to the scdar value of the stimulus field)
to best match the observed behaviour of the nematode. These strategies are thus

candidate mechanisms for chemotaxis control in C. elegans.
Escape behaviour

Aswell as approaching certain sensory sources, ancther basic behaviour in many
animalsisto move avay from or escape asensory source - typically signalling a
predator or some other risk. One well explored neura circuit for such behaviour is that
invalved in the wind-mediated escgpe resporse of the aicket and cockroadh. These
inseds have two rea appendages - the ceci - that are covered in hair sensors that detea
air movement. When stimulated by a puff of air, such as might be aeated by a
predator's grike, the animal rapidly turns and runs away from the diredion d the wind.
The anatomicd layout and reural conrectivity of the sensory axons has been well
described®™*® and a small number of identified neurons well charaderised. These
include four pairs of 'giant’ interneurons that conrect the ddaminal ganglion drectly to
the motor areas of the thoracic ganglion, and are involved in initi ating and steering a

rapid escape.

Chapman® has built a set of direcdion sensitive wind sensors that resemble the
hair sensors onthe aickets cerci, and modell ed the neural system using low-level
programming feaures in aroba's microprocessor, to produce an escape resporse in the
roba. The neura pathway is divided into a'trigger' system and a 'diredion’ system,
which respondto accderation sensitive and velocity sensitive hairs respedively. At the
thoradc ganglion level, the trigger system integrates sensory input and starts a central

pattern generator circuit that causes forwards or badkward movement for a short time.
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The diredion system moduates the resporse by inhibiti ng one side or the other, causing
aturn. Furthermore the network includes input from 'antennag’, light and soundsensors.
This enables the robat to integrate these other modaliti es with its escgpe resporse, e.g.
to avoid olstades and foll ow wall s while escgping, to have heightened sensitivity for
escgpe when light or noise levels are high, o indeed to show an escgpe resporse to

sufficiently strong changes in any of these sensory cues.

The resulting behaviour of the roba repli cates a number of charaderistics of the
animal's escape resporse, such as the aili ty to make different kinds of initial turns
depending on the stimulus diredion. Aswell as providing a cmplete model of this
system, a number of testable predictions could be made, for example regarding the
resporse duration d escape runs and the lack of effed of additional stimuli during an
escgpe run. Some interesting features of the drcuit were that it delayed integration o
different sensory pathways to the final pre-motor stage, and that it was foundthat some
'priming’ effeds were nat possble when alinear approximation for the membrane decay

function was used.
Discussion

In thisreport | have focussed onjust afew examples of robas modelling biologicd
systems taken from invertebrate neuroscience There ae many other similar studiesto

be foundin the fields of invertebrate behaviour (e.g. %"

), and vertebrate neuroscience
(e.g. >3 A major motivation for the work remains the passbili ty of finding new
solutions to engineeing problems. But from the viewpoint of the biologist, what are the
advantages and costs of actually building physicd repli cas to test hypaotheses? Do robas

provide amore redi stic way to ascertain how aneural circuit controls behaviour?

The answer depends what is meant by ‘redistic’. Thiscan, firstly, concern how

applicéble the results of the robat are to the red biological system - isthe model it
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implements intended as "an empiricd claim about some part of the physicd world"3>?
Much of the engineering end of biologically-inspired robdicsis nat, in this snse,

redi stic modelli ng of any actual biological system. But as | have tried to ill ustrate here,
there are examplesthat do closely relate to hiology. Provided the roba implementation
isproperly ases=d, it can, like other kinds of models, provide useful evaluation d and

predictions from biologicd hypotheses.

However aroba may be a'redistic' biological model inthis nseyet notina
semndsense: that of how detail ed the model is. That is'red' as the oppasite of ‘'ided".
For example many of the models discussed above use arather idealised naion d motor
control and do na include the detail s of limb movements to generate motion. They
neverthelessprovide an interesting examination d red biologica questions. Other
robas nat discussed here d@tempt to replicae in more redli stic detail the motor
medhanisms (e.g. for six-legged walking in insects***°, or for lobster locomotion).
However hardware anstraints onroba models can limit the redi stic detail possble.
For example we gtill | adk motor tecdhndogy that is comparable to musclein its drength
and flexibili ty for space and energy requirements. Thus aroba mode may necessarily

be more astrad than a detail ed ssimulation.

A third use of 'redlistic' isto refer to the biological level of the mechanisms
represented in the model. As noted by Churchland & Sejnowski® "Not uncommonly, a
model will be aiticised as unredlistic for faili ng to include very low-level properties’
(p-136. Here the use of the term can be highly relative - the simple spiking neurons
used in the model of escape behaviour are ‘redistic' compared to most artificial network
research bu not so realistic as the multicompartmental ion channel models used in
many small network smulations. Though there is no theoretical reason why such low-
level neural smulations could na be wnneded to aroba's aduators and effedors, in

pradicethere ae problems, for example, with having the processng of sensory input
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occur in something approximating red time. Hence there limits onthe 'level of realism'
possble in roba models as a mnsequenceof the am of buil ding complete systems that

conred sensors to aduators and guide behaviour in adual tasks.

It isworth naing, however, that redism in the sense of detailed or low-level
medhanismsis not a guaranteeof redism in afourth sense, that of whether the
mechanisms built i nto the model acarately represent the system being modelled. A
highly detail ed low-level simulation may turn ou to be a1 incorred explanation d the
phenomenon,where ahigher level or amore astract representation in fact cgptures the
'red’ situation. The nematode roba ill ustrates this point: the exad neural conrectivity
used in the roba probably will not map exadly to the drcuit in the nematode when this
is determined; whereas the analytic description d it as combining klinotaxis and
klinokinesisislikely to be an accurate description d the function o whatever acual
circuit isfound.Roba models may be biologically plausible & onelevel but not at

another.

A related debate is whether we can ever know that we have 'acarately
represented redity' in ascientific model. Logically, we canna, bu it is apparent that
some models, such as those derived from regresson analysis on the data, make lesser
clamsto thiskind d redism. On the other hand, such models can be caable of highly
'redistic' reproduction d the data. In roba models of animal behaviour, there can be a
superficia sense of such 'output’ redism induced by our natural readionsto seeng a
red-world devicemoving autonamously. The roba can appear impressvely ‘animal-
like' even when the behaviour only loosely resembles the red animal. Relying onthis
effect isapotential pitfall for roba moddlling. It is a poa substitute for what shoud be
ared strength of roba models - that the model can actually be tested in the same

experimental situation asthe animal and data ll ected to make dired comparisons.
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Thisleadsto afina sense of 'realistic' - when it isused to refer to the nature and
context of the model i.e. doesit exist in and interad with thered world? It isonly in
this ense that roba models are, of their nature, more redi stic than ather kinds of
simulation. Henceit is here that we shoud look for the alvantages of such models, that
may courteract some of the limitations described above. Oneisthat by providing areal-
world groundng, researchers are prevented from making unredistic assumptions abou
the environment, which may misleal them about the medanisms needed to deal with
the environment, asill ustrated in the work onthe looming detedor described above.
Anocther isthat it is smetimes easiest to represent redity with reality, asin the use of
red moth antennae on aroba described above. Additiondly it isimportant, if we aeto
understand the neurobiology of an animal, to understand some of the red physics of the

sensors, aduators and environments that it inhabits.

In summary, then, the use of robas can offer a mmplementary method d
modelli ng biological systems. The field of insect neuroscience seams particularly ripe to
take alvantage of the strengths of such models, as we have something approaching a
hali stic understanding of parts of the behaviour from sensorsto control at the level of
neural connedivity. Aswell asthere being a potentia techndogicd pay-off in
generalising the small and efficient mechanisms foundin inseds, thereis a'so much that

biologists might learn through these goproacdes.
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