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Abstract

Oculomotor control in a humanoid robot faces sim-
ilar problems as biological oculomotor systems, i.e.,
the stabilization of gaze in face of unknown pertur-
bations of the body, selective attention, stereo vision,
and dealing with large information processing delays.
Given the nonlinearities of the geometry of binocu-
lar vision as well as the possible nonlinearities of the
oculomotor plant, it is desirable to accomplish accu-
rate control of these behaviors through learning ap-
proaches. This paper develops a learning control sys-
tem for the phylogenetically oldest behaviors of oculo-
motor control, the stabilization reflexes of gaze. In a
step-wise procedure, we demonstrate how control the-
oretic reasonable choices of control components result
in an oculomotor control system that resembles the
known functional anatomy of the primate oculomotor
system. The core of the learning system is derived
from the biologically inspired principle of feedback-
error learning combined with a state-of-the-art non-
parametric statistical learning network. With this cir-
cuitry, we demonstrate that our humanoid robot is
able to acquire high performance visual stabilization
reflexes after about 40 seconds of learning despite sig-
nificant nonlinearities and processing delays in the sys-
tem.

1 Introduction

The goal of our research is to investigate the inter-
play between oculomotor control, visual processing,
and limb control in humans and primates by explor-
ing the computational issues of these processes with
a humanoid robotic system and by comparing predic-
tions of our theories with data from neurobiology. In
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this paper, we will present the first step towards these
goals, focussing on oculomotor control. In many bio-
logical organisms, oculomotor is the interface to one
of the most important sensory systems, the visual sys-
tem, and through this system it affects biological in-
formation processing in various ways. Firstly, ocu-
lomotor control is needed to select which visual in-
formation should be processed by the limited sensory
resources of the eye and the following brain circuits.
This role is particularly important in primates that
employ foveal vision. Furthermore, as eye movements
must be executed in a sequential manner, it is cru-
cial to focus visual attention at the right time on the
right targets such that subsequent information pro-
cesses, in particular motor planning and execution,
receive relevant information sufficiently fast to update
on-going computations. Secondly, in order to obtain
full understanding of limb motor control or whole-
body control, it may be necessary to study oculomotor
control because oculomotor control may be a crucial
constraint in how movement of other body parts are
planned. Recent physiological research provides sev-
eral insights that are consistent with the above state-
ments. For instance, Gauthier et al. demonstrated a
tight coupling of oculomotor and limb-motor systems
through oculo-manual tracking experiments of visual
targets|Gauthier et al.(1988), ], and Miyashita et al.
showed that anticipatory saccades in sequential pro-
cedural learning in monkeys are tightly coupled to the
limb-motor system [Miyashita et al.(1996), ].

Many
artificial vision systems [Ballard & Brown(1993),
Aloimonos et al.(1988), | have been developed to in-
clude oculomotor control techniques. To contrast
these “moving” vision systems from research con-
ducted using purely “static” vision systems, the term



“active” vision
was introduced [Ballard & Brown(1993), ]. Although
most of these approaches are inspired by biology’s
active vision [Ferrell(1996), Takanishi et al.(1995),
Capurro et al.(1996), Berthouze et al.(1996a),
Murray et al.(1992), |, only few implementations of
oculomotor systems can be found that try to empha-
size biological plausibility.

In this paper, we will focus on an active vision sys-
tem that employs as much as possible computational
mechanisms that have been discovered in neurophys-
iological research on primates. We will restrict our
scope to the most basic oculomotor behaviors, the sta-
bilization of visual information by means of oculomo-
tor reflexes. Successful visual perception requires that
retinal images remain constant, at least for a certain
amount of time. Since an oculomotor system usually
resides in a moving body, one of the most basic and
phylogenetically oldest functions of oculomotor con-
trol is visual stabilization, an area that has been stud-
ied intensively in neurobiology and that is known to
be implemented as a combination of reflexes.

Our work is particularly inspired by research
in the vestibulocerebellum that suggested the idea
of feedback-error-learning (FEL) as a biologically
plausible and control theoretically sound adaptive
control concept [Kawato(1990), ].  While FEL
has been pursued in several robotic studies before
(e.g.,[Bruske et al.(1997), Berthouze et al.(1996b), ]),
there has never been any emphasis on developing syn-
thetic FEL learning approaches that consider fast non-
linear learning and coping with unknown delays in the
sensory feedback pathway.

In the context of learning oculomotor reflexes, we
will demonstrate in this paper how nonparametric re-
gression networks in conjunction with FEL can be
employed to learn a biomimetic oculomotor controller
that leads to accurate control performance and very
fast learning convergence for a nonlinear oculomotor
plant with temporal delays in the feedback loop. For
this purpose, first, we will review some of the elemen-
tary principles of biological gaze stabilization reflexes.
Second, we will focus on exploring how, from a com-
putational point of view, efficient learning of these re-
flexes could be achieved based on parallels that have
been developed in research on the vestibulocerebel-
lum. At last, we describe the experimental setup we
have developed to explore the feasibility of biomimetic
oculomotor control and results obtained with this sys-
tem.

2 Biological VOR-OKR Models

2.1 The VOR and the OKR

When we wave our hand in front of our eyes at a
moderate frequency, it seems blurred, while there is no
blurring when we look at the non-moving hand during
movement of our head at a similar frequency. The for-
mer phenomenon involves the Opto-Kinetic-Response
(OKR), one of the basic reflexes to stabilize images on
the retina. As sensory input, the OKR receives reti-
nal slip information. Retinal slip is usually defined as
the overall velocity with which an image drifts on the
retina. As the goal of the OKR is to keep the image
still on the retina, retinal slip can be used as an er-
ror velocity signal for the OKR system. We will also
use the positional error signal in our experiments be-
low, and thus, we will explicitly distinguish between
retinal slip error and retinal slip error velocity when
necessary. Otherwise, retinal slip will denote both po-
sition and velocity errors.

The second phenomenon above which resulted in
non-blurred visual perception is due to the Vestibulo-
Ocular-Reflex (VOR). The VOR uses as sensory input
the head velocity signal acquired by the vestibular or-
gan in the semicircular canal. This signal is avail-
able with short latency (15-30ms) and can thus stabi-
lize the image on the retina more efficiently than the
OKR, whose retinal slip-based negative feedback sys-
tem operates with about 80-100ms latency. The VOR
inverts the sign of the measured head velocity and,
with the help of a well-tuned feedforward controller,
rapidly generates the appropriate motor commands for
the eyes. This fast control loop allows for non-blurred
perception at much higher frequencies than the OKR.

For biological systems it is known that VOR
and OKR cooperate to achieve visual stabiliza-
tion.  The output of the vestibular system has
been shown to be proportional to the head ve-
locity in the frequency range between 0.02 and
2 Hz [Melvill Jones & Milsum(1971), |. However, its
output is attenuated during rotational head motion
with constant velocity, which leads to a vanishing of
the VOR response. In this situation, the slip of the im-
age on the retina will elicit a response from the OKR
such that the OKR instead of the VOR will stabilize
the retinal image. The OKR is well suited to fill in the
missing VOR performance as its preferred frequency
range is much lower than that of the VOR.



2.2 An overview of previous learning

models of the VOR and OKR

VOR performance is not genetically prepro-
grammed but rather adaptive. During experimental
manipulations of retinal slip using magnifying specta-
cles, inversion prisms, or rotating visual screens, the
VOR gain (the ratio of eye to head velocity) changes
after some adjustment time such that the previous
performance of keeping images still on the retina is
recovered. This learning is assumed to happen in the
the vestibulocerebellum. Especially for the horizontal
VOR, the neural control circuitry has been studied
intensively since it involves only a small number of
brain areas, i.e., a three neuron reflex arc and the H-
zone [Ito(1984), ] of the cerebellar flocculus, which is
also known to participate in the OKR.

Gomi and Kawato proposed a model of VOR-
OKR learning, simulated simultaneous adaptation of
VOR and OKR [Gomi & Kawato(1992), |, and com-
pared it with the biological data. Based on Ito’s
research, learning in their model takes place in the
cerebellar flocculus according to the feedback-error
learning theory [Kawato(1990), |. Lisberger and
his colleagues have proposed VOR learning models
where learning occurs both in the cerebellar floc-
culus and the brainstem [Coenen & Sejnowski(1996),
Raymond & Lisberger(1998), | using findings from a
previous line of research [Stone & Lisberger(1990a),
Stone & Lisberger(1990b), |. Their scheme is more
complex than the Gomi and Kawato model as it differ-
entiates frequency dependent sites of learning in the
brain in order to explain a larger set of experimen-
tal VOR stimuli. Quinn et al. provided a simulation
of adaptive mechanisms in the vestibulo-ocular reflex
employing a learning algorithm similar to feedback-
error learning, however, without investigating the co-
operation and coordination between the OKR with
the VOR [Quinn et al.(1992), ]. Another application
of FEL to learning ocolomotor control was reported by
Berthouze et al. [Berthouze et al.(1996a), |. These au-
thors trained a 3-layer perceptron in a smooth pursuit
task to demonstrate principles of learning by demon-
stration.

3 A Computational Model of the

VOR-OKR
3.1 Research objectives

From a control theoretic point of view, the VOR-
OKR system corresponds to a negative feedback con-

troller based on retinal slip information, augmented
with a feedforward controller based on vestibular in-
put. Control with such a system is straightforward
if the dynamics of the eye system is known and the
feedback pathways have no delays. However, the op-
posite is true for biological and even artificial oculo-
motor systems: retinal slip information is significantly
delayed due to the overhead of complex computations
in the visual pathway, and the oculomotor plant is
nonlinear. The nonlinearities in artificial systems re-
sult from distortions of the lens of camera-eyes and
nonlinear spring terms added by the relatively heavy
cables attached to the cameras. In both biology and
artificial oculomotor system, the offset between the ro-
tational axes of the eye-balls and the head causes an
additional nonlinearity [Coenen & Sejnowski(1996),
Panerai & Sandini(1998), ].

In order to cope with these problems, two routes
can be taken. In classical control engineering, man-
ual system identification would be employed to model
the nonlinearities and delays in the control system as
well as possible. Afterwards, a nonlinear controller
could be designed to achieve appropriate VOR-OKR
performance [Slotine & Li(1991), |. Despite this ap-
proach has been successful, it cannot cope with the
inevitable changes of dynamical systems over time,
and it requires a fair amount of manual work. There-
fore, we will follow an adaptive control strategy in
this paper, similar to biology organisms. Biology ap-
parently equips motor systems with some crude initial
performance, and fine-tunes the performance during
development by means of adaptive neural networks.
Feedback error learning mimics such a process.

In the following sections, we will develop an oculo-
motor control system that resembles the functionality
of the brainstem and cerebellar pathways in biological
oculomotor control. Our goal is to obtain a compu-
tationally efficient, control theoretically sound, and as
much as possible biologically plausible VOR-OKR cir-
cuit. Equipped with a state of the art nonparametric
neural network, our approach will be demonstrated to
have fast learning convergence, excellent performance,
and the ability to deal with unknown nonlinearities
and time delays in the control system. During our de-
velopment, for the sake of clarity it is initially assumed
that the oculomotor system is linear. This assump-
tion is also made in most biological research, since
reflex loops and antagonistic activation can strongly
contribute to a linearization of the nonlinear muscle
properties, and the oculomotor system is unaffected
by interaction forces from limb movement due to its
low inertia. In later sections, we will relax the linearity
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Figure 1: Inverse model control as a most basic VOR
system. For the moment, the oculomotor plant is as-
sumed to be a first order linear system in terms of its
angular position 6, where 7 is the torque input and K
and B correspond to the mass and viscous components
of the plant respectively. K/s is an integrator (1/s)
with the position gain K.
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Figure 2: Inverse model control with a leaky integra-
tor which implements a forgetting term with time con-
stant a.

assumption.
3.2 A simple VOR system

A most basic model of the VOR system can be syn-
thesized as a feedforward open-loop controller using an
inverse model control (Fig. 1). Here, the oculomotor
plant is a first order linear system as in most biologi-
cal studies. The inverse dynamics model requires two
gains, a position gain in the integrator pathway, and
a velocity gain in the velocity pathway. If these gains
closely approximate the stiffness and damping terms
of the oculomotor dynamics, perfect feedforward con-
trol is achieved.

Obviously, the control system in Fig. 1 is only
marginally stable due to the floating integrator. One
possibility to add robustness is to employ a leaky inte-
grator instead of a perfect integrator, a strategy that
is also employed in biology (Fig. 2), largely because
of the imperfect realization of integration in biologi-
cal neurons. Typical value for o would be 0.001, i.e.,
a time constant of 1,000 seconds. The appropriate
value of the leakage term depends on the dynamics of
the input signal and the plant dynamics.

3.3 Merging the VOR with an OKR-like
pathway

Fig. 3 suggests an alternative solution to stabilize
the control system of Fig. 1 by employing negative
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Figure 3: Using the retinal slip information to stabilize
the integrator. The summation of the head angular
position and the oculomotor angular position form the
retinal slip. The retinal slip is multipled by a feedback
gain P to stabilize the integrator.

feedback from a simple feedback controller, e.g., a pro-
portional controller in our first order dynamics exam-
ple in Fig. 3. The output of the feedback controller is
interpreted as a velocity signal and added to the in-
put of the integrator. Even if the feedback pathway is
delayed and has low gain, excellent and stable VOR
performance can be achieved with this new control
system.

With one more modification, the final basic design
of an VOR-OKR controller can be accomplished. The
feedback error signal can be replaced by retinal slip
error and retinal slip error velocity which are com-
puted by the visual systems, as has been made ex-
plicit in Fig. 4. After multiplying these signals with
appropriate gains and summing them up, the output
of the feedback controller is added to the velocity sig-
nal from the vestibular system, as shown in Fig. 4. The
resulting control circuit shows a surprising similarity
with the Final Common Path (FCP) hypothesis as
proposed by Robinson [Robinson(1975), |. Robinson
suggested that the outputs of all oculomotor behav-
iors converge as velocity commands in a direct path-
way and an integrated indirect pathway. The final
motor command is generated in these two final path-
ways and subsequently relayed to the motoneurons.
A large amount of evidence supports that oculomotor
behaviors employ velocity control [Carpenter(1977), ],
thus indicating that velocity signals may be the major
component of the final common path. Such velocity
commands could also carry an inverse dynamics model
of the eye-muscle system.

By inspecting Fig. 4 more carefully, and by con-
ceiving of the inverse dynamics controller as a final
common path, this control circuit can be interpreted
as realizing an VOR-pathway and an OKR-like path-
way. In the biological oculomotor system, the OKR
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Figure 4: Adding the PD command to the vestibular
signal. In addition to Figure 3, a velocity feedback
pathway consisting of a differentiator s and a gain D
is added.
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Figure 5: Adding a learning controller as an indirect
pathway. This learning controller takes the desired ve-
locity and the estimated desired position of the oculo-
motor plan, and outputs necessary feedforward torque.
Since we use feedback-error-learning, the feedback sig-
nal is also fed to the learning controller as a training
signal.

is conventionally defined as a compensatory negative
feedback controller for the VOR. In this sense, the
pathway involving the PD controller based on retinal
slip can be called the OKR pathway in our final dia-
gram.

3.4 Adding a learning network

In a last step, a learning component is added to the
circuitry in Fig. 4, illustrated in Fig. 5.

The entire control systems is quite similar to what
has been discovered in the primate oculomotor system.
The a priori existing feedforward controller provides
some crude functionality of the VOR. The a priori
existing feedback controller provides acceptable OKR,
performance for slowly changing visual targets and
acts as a compensatory negative feedback controller
for the VOR. These systems form what is called the

“direct pathway” of oculomotor control in biology. By
adding a learning controller in the indirect pathway
of Fig. 5, trained with the FEL strategy, excellent
VOR performance can be accomplished, even if the
feedback pathway has large delays, and also the OKR
performance will be improved to some extent. This
learning network, known to be located in the primate
cerebellum, acquires during the course of learning an
inverse dynamics model of the oculomotor plant that
compensates for the missing performance of the crude
feedforward controller in the shaded box of Fig. 5. The
coordination of a direct and indirect pathway is anal-
ogous to how the cerebellar pathway acts in parallel
to the brainstem pathways [Gomi & Kawato(1992), |.
As developed in [Shibata & Schaal(2000), ], this con-
trol system is a control theoretical reasonable solution
for both biological and robotic oculomotor control.

From the viewpoint of adaptive control, FEL is a
model-reference adaptive controller. The controller is
assumed to be equipped a priori with a stabilizing lin-
ear feedback controller whose performance, however, is
not satisfactory due to nonlinearities in the plant and
delays in the feedback signals. Therefore, the feed-
back motor command of this controller is employed as
an error signal to train a neural network controller.
Given that the neural network receives the correct
inputs, i.e., usually current and desired state of the
plant, it can acquire a nonlinear control policy that
includes both an inverse dynamics model of the plant
and a nonlinear feedback controller. [Kawato(1990), ]
proved the convergence of this adaptive control scheme
and advocated its architecture as an abstract model of
learning in the cerebellum. Fig. 5 shows how FEL can
be embedded in our oculomotor system.

3.5 Fast and stable learning

Feedback-error learning (FEL) does neither pre-
scribe the type of neural network employed in the
control system nor the exact layout of the control
circuitry. Rather FEL is a principle of learning
motor control. It employs an approximate way of
mapping sensory errors into motor errors that, sub-
sequently, can be used to train a neural network
by supervised learning. As a computationally effi-
cient learning mechanism, we suggest to use Recur-
sive Least Squares (RLS) for FEL, a Newton-like
method with very fast convergence, high robustness,
and without the need for elaborate parameter adjust-
ments [Ljung & Soderstrom(1986), |. To apply RLS
for FEL, a small modification in the RLS algorithm is
required. The normal RLS is formulated as in Equa-
tions 1 and 2, where w is the regression vector to be



estimated, P is the inverted covariance matrix of the
input data, x is the input vector, y is the output, and
9 is the predicted output. A\ is a forgetting factor,
discussed below.

P(t—Dx(t)x(t)TP(t - 1)

P(t) = A+ z(t)TP(t — 1)x(t)

P(t—1)—

1
N ] (1)

w(t) = w(t —1) +PO)z(t)(y(t) —y)  (2)

§(t) = w(t)" =(t) (3)

As can be seen in Equation 2, normal RLS re-
quires the presence of a target output y in the up-
date rules. In motor learning, target values for mo-
tor commands rarely exist since errors are usually
generated in sensory space, not in motor command
space. The strategy of FEL can be interpreted as
generating a pseudo target for the motor command
y(t—1) =g(t—1)+7s (t), where 7y, denotes the feed-
back error signal. Thus, for FEL, Equation 2 needs to
be modified to become:

w(t) =w(t—1)+P)x(t)r(t + 1) (4)

It should be noted that FEL requires the appro-
priate time alignment of error and state, as shown by
the time indices in Equation 4. Moreover, since the
feedback error signal is only an approximate value,
it is necessary to add a forgetting factor A in RLS, as
shown above. A lies in the [0, 1] interval. For A = 1, no
forgetting takes place, while for smaller values, older
values in the matrix P will be exponentially forgotten.
This forgetting strategy allows to neglect training data
from the early stages of learning, where the feedback
error was large and most likely the most inaccurate.

Fig. 6 shows a Matlab/Simulink model for the sug-
gested VOR learning system. The oculomotor plant is
described as M6 4+ BO + K6 = T where (M, B, K) =
(3.6889 x 107%,0.0341, 0.4875). These values were de-
rived from our real experiments. Since the mass term
M is very small, the system can be considered first
order. 0.5 Hz sinusoidal head motion was generated,
and 33 ms sensor delay was assumed.

Fig. 7 illustrates the time course of the retinal slip
from the simulation employing several variations in
the control circuitry. (a) shows the time course of the
retinal slip acquired by the complete control system as
in Fig. 6. In (b), the RLS learning pathway was elim-
inated. (c) is a case where additionally the vestibular
signal was not passed to the integrator. And in (d),

Figure 6: Our VOR-OKR diagram used for the simu-
lation on SIMULINK. This diagram is a hybrid system
of the discrete and the continuous oculomotor plant in
order to simulate the real robot system as realistically
as possible.

retinal slip [rad]

Figure 7: Time course of the retinal slip for several
control variants cases described in Figure 6

even the feedback signal was not integrated anymore.
Only the complete system can achieve perfect perfor-
mance, i.e., zero retinal slip.

4 Learning in nonlinear oculomotor
systems

4.1 Sources of nonlinearity in oculomotor
control

There are three sources of nonlinearities both in
biology and artificial oculomotor systems: i) muscle
nonlinearities or nonlinearities added by the actuators
and the usually heavy cable attached to the cameras,
ii) perceptual distortion due to foveal vision, and iii)
off-axis effects. Off-axis effects result from the non-
coinciding axes of rotation of eye-balls and the head
and require a nonlinear adjustment of the feedforward
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Figure 8: Off-axis configuration

controller as a function of focal length, eye, and head
position. Note that this off-axis effect is the most sig-
nificant nonlinearity in our oculomotor system.

Equation 5 demonstrates the mathematical formula
of the off-axis nonlinearity, derived from Fig. 8. «(t)
is the appropriate eye angular position for a target at
distance D and angular position §(t), given an offset
d;,d, of the eye-axis to the head-axis and the head
angular position y(t).

Dsin(5(t)) — dysin(y(t)) + dazcos(y(t))

aft) = tan™!(

(5)
Fig. 9 exemplifies the magnitude of the nonlinearity
of the off-axis effect. Each curve shows the nonlinear
component of the retinal slip, i.e., da + 6y = (a(t) —
a(0))+(v(t)—~(0)). For a linear system, this quantity
would be zero, i.e., a change in gamma would require
an equal change in alpha. The axis offset effects that
this equality does not hold anymore. The curves in
Fig. 9 were calculated for different values of D given
that 3 =0, v(0) = 0, and «(0) = sin™ ' (d,./(D — d,)).
As can be seen, the nonlinearity of the retinal slip
become quite significant for small D.

4.2 Learning in nonlinear systems

For nonlinear plants, a nonlinear learning system
needs to replace the RLS solution from above. The
appealing performance of recursive least squares can
be carried over to the nonlinear domain by employing
a spatially localized version of RLS, as suggested in
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Figure 9: Nonlinear component of the retinal slip in
off-axis cases for d, = 0.05 m,d, = 0.1 m

the Receptive Field Weighted Regression (RFWR) al-
gorithm [Schaal & Atkeson(1998), ]. RFWR approx-
imates nonlinear functions by piecewise linear func-
tions localized in input space. The region of validity
of each local model is determined by a receptive field
which assigns a weight wy, i.e., the activation strength
of the receptive field, to an input data vector x accord-
ing to multidimensional Gaussian kernel function:

wy, = exp(—%(ﬂc — i) Dz — cx)) (6)

The receptive field is thus parameterized by its lo-

Dcos(B(t)) — dycos(7(t)) — dgsin(y(2)) )_7(t>cation in input space, ¢ € R™, and a positive definite

distance metric Dy, deteremining the size and shape
of the receptive field.

A prediction g for a query point x is calculated
from the normalized weighted sum of the individual
predictions g, of all receptive fields:

K N
K
D ke1 Wk
For the individual prediction within each receptive

field, a linear function models the relationship between
input and output data in analogy to RLS:

(7)

:():

&= ((x—cp)", )"
(8)
where 3, denotes the parameters of the locally linear
model and & a compact form of the center-substracted,
augmented input vector to simplify the notation.
To clarify the elements and parameters of RFWR,
Fig. 10 gives a network-like illustration for a sin-
gle output system. The inputs are routed to all

Ok = (x—ck) b +bo = 27 By,
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Figure 10: A network illustration of Receptive Field
Weighted Regression

receptive fields, each of which consists of a linear
and a Gaussian unit. The learning algorithm of
RFWR determines the parameters ¢, Dy, and 3, for
each receptive field by nonparametric regression tech-
niques [Schaal & Atkeson(1998), ].

For updating 3,, RFWR adopts the local version
of the RLS formulae:

B (t) = By(t = 1) + wpPr(t)@(t)(y — Byt — 1)Ti(8%

Py(t) = <[Px(t —1) -

+2(t)TPR(t — )& (t) ]

(10)

In analogy with RLS, in order to use RFWR with

FEL, the update equation for 3, needs to be adjusted
to:

1 Pi(t — Dzt)z(t)TPr(t—1)
by 2

Bi(t) = Byt = 1) + wePr(t)@(t)mpp(t + 1) (11)

4.3 Learning with the Delayed-Error Sig-
nal

For successful feedback-error-learning, the time-
alignment between input signals and the feedback-
error signal is theoretically crucial, and, thus, addi-
tional techniques are required in the case of delayed
sensory feedback. For instance, if a perturbation of the
head or body has frequency components that are much
faster than the delay in the feedback pathway during
VOR learning, the phase delay in the feedback path-
way gets large such that learning speed decreases, or
learning can even become unstable in the worst case.

Amplitude
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Figure 11: Impulse response of a second order filter

To solve this “temporal credit assignment prob-
lem”, the concept of eligibility traces has been sug-
gested in both biological modeling and machine learn-
ing [Barto et al.(1983), ]. For neurons in the brain,
it is assumed that a second messenger would tag
a synapse as eligible for modification. This “tag”
would decay with an appropriate time constant, thus
forming a temporal eligibility window. Schweighofer
et al. proposed a biologically plausible learning
model for saccadic eye movement, and modeled the
second messenger as a second order linear filter
(see Fig. 11 ) of the input signals to the learning
system[Schweighofer et al.(1996), ]. Using a second
order filter is important since, in contrast to a first or-
der filter, the impulse response has a unimodal peak
at a delay time determined by the time constant of the
filter. For successful learning, the delay time only has
to roughly coincide with the actual delay of the sen-
sory feedback. Note that first order filters are less ap-
propriate as their impulse response peaks at the stim-
ulus onset, i.e., without any delay. In related work,
Fagg proposed a cerebellar learning model where el-
igibility traces modeled by such a second order filter
are employed[Fagg et al.(1997), ]. Applying this tech-
nique to FEL, we result in our final learning control
system as illustrated in Fig. 12. This control system
will serve for experimental evaluations on our anthro-
pomorphic robot in the following section.
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Figure 12: VOR-OKR model with eligibility trace.
Compared to Figure 5, control and learning are sep-
arated in the learning compartment. The impuluse
response of a second order filter is depicted before the
learning box to indicate eligibility traces.

5 Experimental Results
5.1 Experimental setup

We implemented an on-line learning system of the
VOR-OKR controller for our humanoid robot. Each
DOF of the robot is actuated hydraulically out of a
torque control loop. Each eye of the robot’s oculo-
motor system consists of two cameras, a wide angle
(100 degrees view-angle horizontally) color camera for
peripheral vision, and second camera for foveal vision,
providing a narrow-viewed (24 degrees view-angle hor-
izontally) color image. This setup mimics the foveated
retinal structure of primates, and it is also essential for
an artificial vision system in order to obtain high res-
olution vision of objects of interest while still being
able to perceive events in the peripheral environment.
Each eye has two independent degrees of freedom, a
pan and a tilt motion.

Fig. 13 depicts our experimental system. Two sub-
systems, a learning control subsystem and a vision
subsystem, are setup in each VME rack and carry out
all necessary computations out of the real-time oper-
ating system VxWorks.

Three CPU boards (Motorola MVME2700) are
used for the learning control subsystem, and two CPU
boards (Motorola MVME2604) are equipped for the
vision subsystem. In the learning control subsystem,
CPU boards are used, respectively, for: i) low level
motor control of the eyes and other joints of our robot
(compute torque mode), ii) visuomotor learning, and
iii) data receiving from the vision subsystem. All
communication between the CPU boards is carried

CONTROL VISION
and LEARNING —_—
MVME2604
MVME2700 =
\ Fujitsu <
MVME2700 Tracking Vision | =
NTSC o
MVME2700 Signal |MVME2604 %
[AID Converter] Fusy
D
/D Converter Tracking Vision

NTSC
Signal

sensor signals
motor command

Figure 13: Our experimental setup

out through the VME shared memory communica-
tion which, since it is implemented in hardware, is
very fast. In the vision subsystem, each CPU board
controls one Fujitsu tracking vision board in order to
calculate retinal slip and retinal slip velocity informa-
tion of each eye. NTSC video signals from the binoc-
ular cameras are synchronized to insure simultenous
processing of both eyes’ vision data. Vision data are
sent via a serial port (115200 bps) to the learning con-
trol subsystem. For the experimental demonstrations
of this paper, only one peripheral camera is used for
VOR-OKR in its horizontal (pan) degree-of-freedom.
Multiple degrees of freedom per camera, and multiple
eyes just require a duplication of our control/learning
circuits. If the image on a peripheral camera is sta-
bilized, the image on the mechanically-coupled foveal
vision is also stabilized. In order to mimic the semicir-
cular canal of biological systems, we attached a three-
axis gyro-sensor circuit to the head (Murata Manu-
facturing). From the sensors of this circuit, the head
angular velocity signal is acquired through a 12 bit
A/D board. The oculomotor and head control loop
runs at 480 Hz, while the vision control loop runs at
30 Hz.

We use both visual-tracking and optical flow cal-
culation in order to
acquire the retinal slip and the retinal slip velocity,
respectively. Both processes are based on the block-
matching method[Inoue et al.(1993), | which is per-
formed by the Fujitsu Tracking Vision board in real-
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Figure 14: Retinal slip acquired by the real vision sys-
tem

time. In the beginning of each learning experiment,
a template image is sampled from the the center of
the image, and stored in memory. During the exper-
iment, visual-tracking of the template image is per-
formed in a pre-specified search area, and its resulting
motion-vector is used as a retinal slip. The top row of
Fig. 14 shows time course of the acquired retinal slip
by our vision system. For this plot, the eye was fixed
in the head, and the head was rotated sinusoidally.
The bottom row of Fig. 14 shows the time course of
the differentiated retinal slip. This retinal slip veloc-
ity is too noisy for learning. As on-line temporal fil-
tering would produce too much time lag in the signal,
we chose spatial averaging of multiple optical flow de-
tectors to reduce the noise. The mid row of Fig. 14
illustrates samples of the retinal slip velocity acquired
by this method. Comparing this data with the data
in the bottom row demonstrates the improvements of
spatial averaging of flow vectors in order to calculate
velocity signal. For the following experiments, one
template-tracker and 81 optic flow detectors were run
for one peripheral camera. To maintain a 30 Hz vision
processing loop rate, pixels were sampled only every
three dots. Due to this sampling, the effective angular
resolution around the center of the image was about
0.03 rad.

5.2 Experimental results(1): efficacy of
eligibility trace

Since the retinal slip signals are generated from vi-
sual data, they are delayed by more than 30 ms. This
delay affects FEL negatively. In this first set of exper-
iments, we test how the eligibility traces can improve
the efficacy of VOR learning.

The following experimental result was obtained
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Figure 15: Time course of the rectified mean retinal
slip: While the dashed line represents data obtained
without eligibility trace, the solid line shows data ac-
quired with eligibility trace.

from a head movement generated by three superim-
posed sinusoidal signals with frequencies of 0.6, 2.0,
and 3.0 Hz and amplitude of 0.1 rad, respectively.
Fig. 15 shows the time course of the rectified reti-
nal slip obtained from a moving average using a one
second time window. While the dashed line repre-
sents data obtained from learning without eligibility
traces, the solid line shows data acquired with eligi-
bility traces. This figure shows that eligibility traces
are necessary for successful learning as the the retinal
slip does not decrease without using the traces.

5.3 Experimental results(2): off-axis case

The next set of experiments investigated the im-
provements of using REFWR for learning in a nonlinear
oculomotor plant. For this purpose, a large board with
texture appropriate for vision processing was placed in
front of the robot (see Fig. 16 ). The distance between
a camera and the board was around 50 cm, i.e., a dis-
tance that emphasized the off-axis nonlinearities. In
this experiment, the head was moved horizontally ac-
cording to a sinusoidal signal with frequency 0.8 Hz
and amplitude 0.25 rad. We compared linear learn-
ing based on RLS with nonlinear learning based on
RFWR.

Fig. 17 and Fig. 18 present the results of this exper-
iment. Fig. 17 shows the time course of the rectified
retinal slip obtained from a moving average over a one
second time window. The dashed line corresponds to
RLS learning, while the solid line presents the learning
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Figure 16: Experimental environment for the off-axis
case

performance of RFWR, the nonlinear learning system.
The need for a nonlinear learning is clearly demon-
strated in this plot: each learning curve shows im-
provement over time, but the final retinal slip out of
nonlinear learning is almost half of the remaining slip
from linear learning. Fig. 18 shows the time course
of the raw retinal slip signals in the end of learning.
Since, as mentioned in Section 5.1, the effective an-
gular resolution around the center of the image was
0.03 rad, the learning results shown in Fig. 17 and
Fig. 18 are satisfactory as their amplitude is also
about 0.03 rad, i.e., the best result achievable with
this visual sensing resolution.

As shown in Fig. 9, the nonlinear component gener-
ated by the off-axis effect is around 0.05 rad when the
head is rotated 0.25 rad and the visual stimulus is at
0.5 m distance. This difference is consistent with the
average difference between the results obtained RLS
and RFWR, suggesting that REFWR was able to learn
the nonlinear component generated by the off-axis ef-
fect.

6 Discussion

Our research objective is to study the computa-
tional processes of oculomotor control, visual process-
ing, limb control, and the interdependencies of these
three modalities by using a humanoid robot. This pa-
per took a first step towards this goal by exploring
adaptive gaze stabilization in a biomimetic artificial
oculomotor system. We presented how the strategy of
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Figure 17: Time course of the rectified mean retinal
slip: the dashed line corresponds to a linear learning
result, and the solid line corresponds to a nonlinear
learning result.
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Figure 18: Retinal slip in the last part of learning:
the dashed line corresponds to a linear learning result,
and the solid line corresponds to a nonlinear learning
result.

feedback-error-learning together with a state-of-the-
art statistical learning network can be used to con-
struct a control theoretically principled learning sys-
tem for oculomotor control that is surprisingly simi-
lar to the adaptive control strategies employed in the
primate cerebellum. We also showed how the idea of
eligibility traces, a concept from biology and reinforce-
ment learning, works nicely for overcoming unknown
delays in the sensory feedback pathway. In experi-
ments with our humanoid oculomotor system, it was
shown that this system can acquire good VOR per-
formance after about 10 seconds of learning and con-
verges to excellent performance after about 30 to 40
seconds. This performance remained the same even
in the case of nonlinearities of the oculomotor control
system due to off-axis effects. Our control and learning
strategies should be applicable without modifications



Figure 19: VOR-OKR learning with three template
trackers: the monitor output of four cameras(two
eyes) are shown. The bottom half images show the
peripheral vision output where there are three large
white rectangles showing search areas and three small
rectangles showing the current targer positions.

to any other oculomotor systems.

In this paper, for the simplicity of presentation, we
demonstrated experiments using only one axis cam-
era movements. In our ongoing work, we also applied
our techniques in experiments that required binocular,
4-axes simultaneous learning, and learning with mul-
tiple visual template trackers. Fig. 19 illustrated the
camera images with superimposed tracking windows
for this latter experiment. As can be seen in this fig-
ure, three visual trackers were located in the periph-
eral area of the image, which adds robustness in visual
processing in so far that attending to a moving object
in the center of the image would not interfere with the
learning process that is guided by peripheral vision.

Despite the success of our oculomotor control sys-
tem, several open issues need to be addressed in future
work.

6.1 Velocity following VOR

In this paper, we have used a template tracker to ac-
quire the retinal slip error. However, simple template-
tracking is not very robust unless tuned with signifi-
cant manual effort concerning luminance change and
image distortion. Another problem is registering the
matching template during robot motion, which is par-
ticularly problematic when using a normal NT'SC cam-
era running in interlace mode. Finding a tradeoff be-
tween camera shutter speed and image brightness is
a possible but not very satisfactory way out. In bi-

ology, it is assumed that the brain only uses retinal
slip error velocity for the VOR-OKR system, and that
the saccadic system compensates for the drift in the
integrator that occurs if a positional stabilization is
missing. This strategy only requires optical flow cal-
culation and no template matching, and it is thus very
robust. Of course, another oculomotor behavior, i.e.,
saccades, need to be added to our control scheme, a
topic that we will address in future research.

6.2 Improving OKR performance

This paper has described how to build a high-
performance VOR system, but not a high performance
OKR. The OKR is induced by large range visual
stimuli on the retina, and, in biology, it is known
that the OKR can be adaptive. The prime objec-
tive of the OKR in biology is conceived as compen-
sating for missing VOR performance at low frequency
movements, but not to achieve perfect visual tracking.
For this purpose, primates possess a specialized visual
feedback oculomotor behavior called ’smooth pursuit’.
Smooth pursuit allows tracking a moving target with
zero-error on the retina. It supresses the VOR such
that the two motor behaviors do not interfer.

Kettner et al. proposed a cerebellar learning model
for learning smooth pursuit [Kettner et al.(1997), ].
From the view point of time series prediction, the
scheme proposed in Kettner et al. corresponds to
learning with tapped-delay-lines: inputs and efferent
copies of the output signals are fed to the learning
module with increasingly larger delay times. Apply-
ing this scheme to create a zero-error smooth pursuit
circuit, and combining it with VOR, OKR, and sac-
cades will be our future work.
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