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Abstract

Most flying insects extract information about their
spatial orientation and self-motion from visual cues
such as global patterns of light intensity or optic flow.
We present an insect-inspired neuronal filter model
and show how optimal receptive fields for the detec-
tion of flight-relevant input patterns can be derived di-
rectly from the local receptor signals during typical
flight behavior. Using a least squares principle, the re-
ceptive fields are optimally adapted to all behaviorally
relevant, invariant properties of the agent and the en-
vironment. In closed-loop simulations in a highly re-
alistic virtual environment we show that four indepen-
dent, purely reactive mechanisms based on optimized
receptive fields for attitude control, course stabiliza-
tion, obstacle avoidance and altitude control, are suf-
ficient for a fully autonomous and robust flight stabi-
lization with all six degrees of freedom.

1 Introduction

Proceedings of the EPSRC/BBSRC International Workshop on
Biologically Inspired Robotics - The Legacy of W. Grey Walter,
14–16 August 2002, HP Labs Bristol, UK, pp. 196–203 (2002)

The main idea of behavior-oriented vision is to extract only
such information from the environment which is required to
control a specific behavior. This allows to minimize the re-
quired amount of computation and internal representation.
In particular, certain reactive behaviors can be immediately
controlled by an appropriately selected visual input. As an
example, phototropic reactions can be observed even in the
most primitive animals, and were the first to be implemented
in biologically inspired, autonomous robots (Walter, 1950).
Braitenberg (1984) showed that the interaction of such sim-
ple, reactive mechanisms with the environment may lead to
apparently complex behavior.

Since natural evolution optimizes the entire organism for
specific behaviors in specific environments, analyzing biolog-
ical examples may provide useful ideas and inspiration for ar-
tificial systems on various levels, including sensor morphol-
ogy, processing steps, control mechanisms, and behavioral
modules. Insect vision and behavior has been investigated
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for decades and many of the involved mechanisms are well
understood. Flying insects are highly optimized for flight be-
havior in their natural environment. Thus in order to con-
trol an artificial flying system in a comparable environment,
many aspects of insect vision and information processing can
be imitated and do not need to be re-invented or developed
from scratch.

Various reactive control mechanisms have been modeled
in insect-inspired robots and computer simulations. Visual
tracking was investigated in a simulation study by Cliff
(1992). Mura and Franceschini (1994) simulated altitude
control and vertical obstacle avoidance behavior, assuming
pure forward translation in a vertical plane and fixed atti-
tude angles. Weber, Venkatesh, and Srinivasan (1997) imple-
mented horizontal centering behavior and speed control on a
mobile robot. One-dimensional tracking and orientation to-
wards a strong contrast was demonstrated by Huber, Franz,
and Bülthoff (1999).

In previous studies we have shown that basic 3D flight sta-
bilization can be achieved by a combination of four insect-
inspired visual orientation strategies (Neumann & Bülthoff,
2001). These strategies include the dorsal light response
for attitude control (Hengstenberg, Sandemann, & Hengsten-
berg, 1986), the optomotor response for course stabilization
(Götz, 1968), as well as visual range finding from transla-
tory image motion for obstacle avoidance and altitude con-
trol (Srinivasan, 1993; Srinivasan, Zhang, Chahl, Barth, &
Venkatesh, 2000).

Here we demonstrate how the behavior-oriented extraction
of visual information from the environment by wide-field in-
tegration units can be optimized in the sense of least squares,
exploiting the covariance of input signals and behavior. In
contrast to an earlier study on self-motion estimation (Franz,
Neumann, Plagge, Mallot, & Zell, 1999), the optimal recep-
tive fields are derived directly from the visual input and do not
require an explicit model of the distance or contrast distribu-
tions in the environment. We present optimal receptive fields
for each stabilization mechanism, as well as first closed-loop
results showing that these mechanisms are capable of produc-
ing robust flight behavior with all six degrees of freedom in a
highly realistic virtual environment.
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Figure 1: Linear wide field integration unit.

2 Extracting flight-relevant information from
visual cues

2.1 Wide-field integration units

Insects use wide-field integration units to evaluate the local
light intensity and local optic flow signals from preceding
retinotopic processing steps. These units have complex re-
ceptive fields that are highly selective for behaviorally rel-
evant input patterns. Their sensitivity distributions containa
priori information on invariant properties of both the behavior
and the environment. Examples are the fly tangential neurons
which are tuned to characteristic, self-motion-induced optic
flow fields (Krapp & Hengstenberg, 1996).

A model for wide-field integration units is depicted in
Fig. 1. A large population of locally weighted input signals is
integrated to yield the receptive field responser as the scalar
product

r =
∑

i

wisi = ws (1)

of the input signal vectors and the weight vectorw. To con-
trol the different components of flight behavior, various inte-
gration units evaluate the input signal distribution in parallel,
each unit tuned to a specific pattern determined by the partic-
ular distribution of local weights.

Based on this general processing architecture inspired by
the fly visual system, the exact weight distributions are de-
termined using an optimization method. In the following, we
show how optimal global receptive fields can be derived di-
rectly from the local receptor signals occurring during typi-
cal behavior. Using a least squares principle, the sensitivity
distributions are optimally adapted to all behaviorally rele-
vant, invariant properties of the agent and the environment,
such as systematic errors in the motion detector signals, typ-
ical movements of the agent, and characteristic distributions
of light intensity, color, contrast and distance in the environ-
ment.

2.2 Optimal receptive fields

Letr ∈ <m be the vector of activation signals for a single mo-
tor unit, recorded atm measurements during typical behavior,

andS ∈ <m×(n+1) the matrix containing the corresponding
signals fromn local receptors. Assuming a linear wide-field
integration unit with weight vectorw ∈ <n+1, the receptive
field response is

r = Sw . (2)

S cannot be inverted directly sincem > n + 1, so in order
to obtain the weight vectorw, the Moore-Penrose inverseS+

has to be used instead and gives an optimal solution

w = S+r (3)

in the sense of least squares, so we obtain the vectorw with
‖Sw − r‖ = min (Press, Teukolsky, Vetterling, & Flan-
nery, 1992).

The Moore-Penrose inverse can be efficiently calculated
using a Singular Value Decomposition (SVD; Press et al.,
1992). The SVD of the data matrixS ∈ <m×(n+1) yields
three matricesU ∈ <m×(n+1), Σ ∈ <(n+1)×(n+1) and
V ∈ <(n+1)×(n+1) with

S = UΣVT . (4)

The diagonal matrixΣ contains the singular valuesσi. The
inverse

Σ̃ = [diag(σ̃i)] (5)

is determined by inverting the diagonal elements

σ̃i =
{

1/σi, σi > θ
0, else

. (6)

Singular values below a thresholdθ are set to zero. SinceU
andV are orthogonal, they can be inverted by transposing,
and we yield the Moore-Penrose inverse

S+ = VΣ̃UT (7)

and the optimal weight vector

w = VΣ̃UTr . (8)

However, the high dimensionality of the data matrixS im-
pedes the numerical tractability of the SVD. As an example,
for altitude control the output signals of 1920 elementary mo-
tion detectors are recorded at 1000 randomly selected loca-
tions in the virtual environment, each measurement for 10
time steps with a randomly chosen altitude, resulting in a very
large data matrixS ∈ <10000×1921.

The dimensionality can be reduced by recordingSTr ∈
<n+1 instead ofr ∈ <m andSTS ∈ <(n+1)×(n+1) instead
of S ∈ <m×(n+1). Eq. (2) then becomes

STr = STSw , (9)

and with the Moore-Penrose inverse
(
STS

)+
we obtain(

STS
)+

STr =
(
STS

)+
STSw , (10)



Figure 2: Virtual environment used in the simulation experiments.

hence the weight vector is

w =
(
STS

)+
STr . (11)

Again we use the SVD

STS = UΣVT (12)

to yield the Moore-Penrose inverse(
STS

)+
= VΣ̃UT (13)

and finally the optimal weight vector

w = VΣ̃UTSTr . (14)

In principle, this method allows to record time series of ar-
bitrary length sinceSTr andSTS remain at a constant size.
In practice, however, the numerical stability of the SVD de-
pends on the ’condition number’ (Press et al., 1992), the ratio
of the largest and the smallest singular value occurring inΣ.
The condition number rapidly increases with an increasing
number of measurementsm, which might lead to errors for
m � n.

3 Simulation setup and implementation

All experiments were implemented as computer simulations
on a standard PC equipped with 3D OpenGL graphics accel-
eration for polygon-based, textured rendering of highly de-
tailed scenes. The generated, highly realistic visual stimuli
were used for both the receptive field optimization and the
subsequent closed-loop evaluation of the entire processing
system.

3.1 Virtual environment

Fig. 2 shows an example view of the virtual environment used
in the simulation experiments. The simulated environment is
composed of a highly realistic, three-dimensional landscape
with an uneven, hilly terrain and randomly placed trees. All
visible objects such as terrain, obstacles and sky exhibit a de-
tailed, high-resolution and nonperiodic surface texture with
local variations in luminance, color, contrast and spatial fre-
quency.
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Figure 3: Insect inspired omnidirectional eye model.a. Receptor
distribution. b. Spherical image acquisition from six perspective
views.c. Virtual landscape seen through the spherical eye.

3.2 Eye model

Visual stimuli are retrieved from the virtual environment by
an insect-inspired, omnidirectional eye model. It incorporates
typical properties of insect compound eyes, such as an omni-
directional distribution of discrete light receptors in a spheri-
cal field of view, low image resolution, and overlapping local
receptive fields of the individual receptor units.

Fig. 3a shows a quasi-homogeneous distribution of 642 lo-
cal viewing directions on the sphere, arranged on a hexag-
onal lattice. Using this eye model, low-resolution, spher-
ical images are generated by downsampling from multiple
perspective views of the environment, taken at the current
eye position. All local receptor units have appropriately dis-
torted, overlapping Gaussian-shaped sensitivity distributions
(Fig. 3b) in order to prevent spatial aliasing. Fig. 3c shows
the virtual landscape as seen through the spherical eye. The
image covers the entire sphere surrounding the current eye
position, ranging from -180◦ to 180◦ azimuth and from -90◦

to 90◦ elevation. The increasing distortions toward the poles
are due to the Mercator projection used for visualization and
do not occur in the original spherical image.

3.3 Local motion detection

After the distribution of light intensities has been determined
according to the eye model, an additional omnidirectional im-
age containing the spherical distribution of local image mo-
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Figure 4: Elementary correlation-type motion detector after Hassen-
stein and Reichardt (1956).

tion is calculated in a subsequent processing step.

As in previous studies (Neumann & Bülthoff, 2001),
insect-inspired, elementary motion detectors (EMDs) of the
correlation-type after Hassenstein and Reichardt (1956) are
placed between adjacent photoreceptors. As illustrated in
Fig. 4, two neighboring photoreceptors detect the image in-
tensitiesI1 andI2. In each of two mirror-symmetric semide-
tectors one of these input signals is delayed by a temporal
low pass filter and subsequently correlated with the other, un-
delayed signal. The detector response is maximal when the
image displacement during the temporal delay equals the an-
gular distance between the two photoreceptors. The sign of
the difference between both semidetector responses indicates
the direction of motion.

3.4 Flight control loop

The control architecture of the flying agent includes multiple
processing stages and is depicted in Fig. 5. The low resolu-
tion spherical images of local light intensities and local optic
flow serve as input signals for the wide-field integration units
in the subsequent processing step. These units are tuned to
specific patterns in the input signal distribution which are im-
mediately relevant for the control of specific behaviors. In
particular, they are optimized to estimate roll and pitch atti-
tude angles directly from the omnidirectional intensity dis-
tribution, as well as yaw rotations and the relative nearness
of objects in the frontolateral and ventral visual field from the
local optic flow signals. The exact sensitivity distributions re-
sulting from the optimization procedure described above are
presented in the following section.

The output values of the wide-field integration units are
immediately used to modulate motor activations that com-
pensate for deviations from the desired flight state. Inertial
properties of the flying agent are ignored in this simulation.
Small flying insects experience strong viscous air resistance
and reach a steady state velocity after a short initial accelera-
tion phase (Nachtigall, 1968). Thus to a first approximation,
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Figure 5: Visual processing and flight control loop. Arrows repre-
sent processing stages, rectangles the output data generated by each
stage.

the velocity of the agent is set proportional to the generated
lift and thrust forces. The control loop is closed by updating
the position and orientation of the agent in the environment.

4 Results

The control architecture of the flying agent is composed of
four independent behavioral modules, including attitude con-
trol, course stabilization, obstacle avoidance and altitude con-
trol. The crucial processing element for each of these sub-
behaviors is a highly specialized global integration unit that
extracts the required information from the spherical distribu-
tion of local input signals. In this section we present the ex-
act sensitivity distributions of these units resulting from the
described optimization method. Furthermore, examples for
closed-loop flight behavior based on these mechanisms are
shown.

4.1 Optimal receptive fields

For each target behavior, 10000 complete, spherical images
of local intensity or local motion signals were recorded at
randomly chosen locations in the virtual environment. The
according motor activations were varied within the limits that
typically occur during free flight situations, and recorded
together with the simultaneously perceived visual stimuli.
From these data, optimal linear receptive fields were deter-
mined using the optimization procedure described in Sec-
tion 2. The resulting sensitivity distributions are presented
in the following.

Attitude angles

In our simulation the dynamic range of luminance is smaller
than in the real world. To compensate, vertical color gra-
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Figure 6: Optimal spherical receptive fields for attitude estimation.
Dark regions indicate negative, bright regions positive weights.

dients are exploited instead of a luminance gradient. Fig. 6
shows spherical receptive fields for attitude estimation from
the momentary color distribution around the agent. The lo-
cal weights for the red, green and blue receptors are shown
in separate gray value images. Dark regions indicate negative
and bright regions positive weights. The highest sensitivity
is assigned to the blue component since the sky color is al-
most position invariant and therefore indicates the world ver-
tical more reliably than the variable and position dependent
ground colors.

The receptive fields are optimized to estimate the sines of
the roll (left column) and pitch (right column) angles. Thus,
the output values indicate the direction of deviation from neu-
tral attitude and can be immediately used as negative feed-
back signals for attitude control. The shown spatial sensitiv-
ity distributions resemble those of insectocelli, which are in-
volved in the dorsal light response of some insects (Schuppe
& Hengstenberg, 1993).

Yaw velocity

An optimal receptive field for the detection of yaw rotations
in the presence of simultaneous translatory forward motion is
presented in Fig. 7a, showing the spherical weight distribu-
tion for the local EMD signals. The orientation of each line
segment depicts the local EMD direction, the gray level indi-
cates the scaled absolute value of the corresponding weight,
darker lines representing higher values. Fig. 7b shows the
corresponding optic flow field. The orientation of each arrow
shows the local preferred direction, the length denotes the lo-
cal relative sensitivity.

The receptive field is tuned to rotations about the verti-
cal axis during forward flight. The local motion sensitivities
are highest in the image region around the horizon, where
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Figure 7: Optimal receptive field for yaw rotations.a. Spherical
weight distribution for local EMD signals. Darker lines indicate
higher values.b. Corresponding optic flow field.

the optic flow is largely independent of distance variations
and translatory self-motion. The ventral region is exposed
to strong translatory flow due to the smaller distance to the
ground. In the dorsal region the insufficient contrast of the
sky texture prevents a reliable motion detection. Thus, both
regions do not correlate with yaw rotation and receive smaller
weights. The output signal of this receptive field can be di-
rectly transmitted to the yaw motor to establish course sta-
bilization behavior resembling the optomotor response in in-
sects.

Relative nearness to obstacles

Optic flow fields induced by translatory self-motion contain
information about the spatial layout of the environment as
they depend not only on the velocity of the observer, but also
on the distance of the observed objects. The depicted recep-
tive field is tuned to detect differences of translatory optic
flow in the left and right frontolateral regions of the visual
field. The sign of the output signal indicates whether the rel-
ative object nearness is larger on the left or on the right side
of the agent. Thus, it can be used to avoid potential obsta-
cles by turning toward the direction of minimal image mo-
tion. Fig. 8 shows an optimal receptive field for frontolateral
relative nearness difference.

Relative nearness to the ground

The receptive field shown in Fig. 9 is another example for vi-
sual range finding from translatory optic flow. It is specialized
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Figure 8: Optimal receptive field for frontolateral relative nearness
difference. Details as in Fig. 7.

on estimating the relative nearness of the agent to the ground
plane. Naturally, this information is essential for altitude con-
trol and can be readily used to modulate the lift force. The
highest correlations of EMD signals with the relative ground
nearness occur in the ventral region of the visual field since
the ground plane provides a high contrast texture and is close
to the agent. Therefore, the largest weights are assigned to
the ventral region.

4.2 Closed-loop flight behavior

All four behavioral modules were combined in a flying au-
tonomous agent and tested in closed-loop experiments. The
resulting trajectories (Fig. 10) show that the agent is capable
of autonomous flight behavior with all six degrees of freedom
in a highly realistic virtual environment. Full flight behavior
requires that all mechanisms are active simultaneously. Con-
tributions of single modules can be observed depending on
the specific situation of the agent in the environment.

Attitude control. As a prerequisite for all other mecha-
nisms, the dorsal light response ensures that the agent is al-
ways aligned with the terrain surface.

Course stabilization. In the absence of potential obsta-
cles, yaw rotations are suppressed by the optomotor response.
Therefore the agent moves along a straight path (Fig. 10a).

Obstacle avoidance. Strong frontolateral image motion
during forward translation of the agent indicates a potential
obstacle. The agent avoids a collision by turning toward the
direction of smaller optic flow indicating a larger relative ob-
ject distance (Fig. 10b).

Altitude control and terrain following. The optic flow in

-180 -90 0 90 180
azimuth

-90

-45

0

45

90

el
ev

at
io

n

-180 -90 0 90 180
azimuth

-90

-45

0

45

90

el
ev

at
io

n

a

b

Figure 9: Optimal receptive field for relative ground nearness. De-
tails as in Fig. 7.

the ventral region of the visual field is used as an indica-
tor for relative ground nearness, i.e. the reciprocal value of
relative altitude. The agent follows the terrain elevation by
increasing the lift force for strong ventral optic flow, reach-
ing an “equilibrium altitude” when the lift force equals grav-
ity (Fig. 10c). Slight oscillations in altitude can be observed
when flying over regions with strong changes in texture lumi-
nance or contrast. In all situations, collisions with the ground
or with obstacles are robustly avoided.

5 Discussion

We present a biologically motivated visual flight control sys-
tem composed of four reactive orientation strategies includ-
ing attitude control, course stabilization, altitude control and
obstacle avoidance. Using a behavior-oriented approach, the
entire vision system is designed to acquire and process only
behaviorally relevant information in a highly selective man-
ner. Since flying insects are optimized for flight behavior by
natural evolution, they serve as exemplary systems for both
the orientation strategies as well as the information acquisi-
tion and processing stages of the artificial vision system.

The orientation mechanisms are based on the evaluation
of light intensity and optic flow patterns in a spherical field
of view by highly specialized wide-field integration units in-
spired by fly tangential neurons. The covariance of local re-
ceptor signals and specific behaviors is used to optimize the
sensitivity distributions of the global receptive fields to selec-
tively extract flight-relevant information from the visual in-
put. Explicit models of the distance or contrast distribution
in the environment are not required since the weight distribu-
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Figure 10: Closed-loop autonomous flight control with all six de-
grees of freedom. The trajectories are shown as bright lines, together
with their projections on the terrain surface. The position and orien-
tation of the flying agent is indicated by a small helicopter.a. Course
stabilization.b. Obstacle avoidance.c. Altitude control and terrain
following.

tions are derived directly from the input signals.

Our results encompass the exact sensitivity distributions of
all involved global receptive fields. Furthermore, we present
trajectories from closed-loop flight simulations showing that
four independent, purely reactive visual orientation strategies
are sufficient for robust 3D flight behavior in a highly realistic
virtual environment. A detailed, quantitative analysis of the
receptive field responses and the resulting flight behavior will
be presented elsewhere (Neumann, in preparation).

5.1 Applications

All four mechanisms for visual flight stabilization presented
above are purely reactive and do not require internal repre-

sentations of the environment or trajectory planning. They are
based on a massive parallel, feed-forward flow of information
with few sequential processing steps, leading to robust behav-
ior and short reaction times suitable for real-time control of
autonomous robots. The connection and weighting schemes
are highly optimized for specific tasks and do not change dur-
ing computation, facilitating possible hardware implementa-
tions such as analog VLSI (Very Large Scale Integration).
Simple, robust control algorithms are crucial for autonomous
vehicle guidance and robotics, especially in applications with
strong constraints in size, weight and energy consumption,
such as aerospace and miniature robotics.

In analogy to the simulation experiments described here,
the basic processing architecture of these robots can be based
on the insect visual system, whereas the exact weight distri-
butions are derived directly from the visual input during typ-
ical behavior in a typical environment. It is worth noting that
the input images containing pre-processed local information
such as luminance, color or local motion, may differ in size,
shape or resolution. The optimization method ensures that
the maximum amount of behaviorally relevant information is
extracted even from arbitrary receptor arrangements.

5.2 Aerial Robotics

Real-world flying robots are subject to constraints in the
available hardware platforms such as model planes, heli-
copters, or blimps. Most of these platforms are built at larger
physical scales than flying insects. Therefore they may expe-
rience fundamentally different physical effects when interact-
ing with the environment. In particular, the relative effect of
viscous air resistance is strongly reduced in large scale robots
compared to small flies. This has consequences for the ap-
plied orientation strategies and control algorithms:

• Large flying robots require a simultaneous visual control
of both forward velocity as well as object and ground dis-
tance. In contrast, the forward velocity of small flying
insects is to a first approximation proportional to the ap-
plied force.

• Inertial effects need to be actively compensated in large
robots, whereas in small flies unintended self-motions rel-
ative to the surrounding air are passively inhibited by air
resistance. In turn, robots are more robust against external
influences like wind or turbulences, which require active
compensation in insects.

• Many flying insects are physically more robust and toler-
ant against collisions than robots, and are therefore able
to survive failures of the obstacle avoidance system. For
most flying robots collisions are fatal due to the large
mass and forces during impact. In addition, even a slight
contact of the propulsion system with an obstacle may
lead to severe damage or destruction of the flight plat-
form. Thus, large-scale flying robots require an extremely



reliable mechanism for collision avoidance, whereas in-
sects are inherently more tolerant against failures of the
visual system.

Other issues such as onboard vibration require additional so-
lutions, e.g., an appropriate adaptation of the spatiotemporal
sampling and low pass filtering of the visual input signals to
the properties of the particular robot and environment. The
vision system proposed here is expected to be robust against
onboard vibrations with small amplitude since it has a very
coarse spatial resolution.

In conclusion, the described insect-inspired reactive con-
trol mechanisms are expected to perform best for applications
such as micromechanic implementations or small underwater
robots, which are subject to similar physical effects and con-
straints as real flies. Larger robots may require different con-
trol algorithms due to different motion dynamics and propul-
sion systems. Thus, miniature implementations or computer
simulations may be more suitable models for flight control
in insects than large flying robots. For all of these applica-
tions the proposed behavior-oriented vision system provides
a simple but highly effective method to extract flight-relevant
information from the environment.
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