

Methodology

Distributed applications may be separated into a collection of components carrying out computations locally and a collection of policies describing interactions between groups of components

Generic design concerns such availability, consistency and security can be represented as application independent protocols which are composed with applications to meet particular requirements

Protocol abstraction encapsulates protocol behavior (i.e. It presents an interface representing the interaction policy while hiding the details of the coordination mechanism used to implement the policy)

Distributed interaction policies are implemented by customizing system events defining components interactions

Combination of system and programmer defined events together define an interaction policy

Support coordination of distributed components requires facilities to modify and customize inter-component interaction

DIL = {events,protocol instance, rules}

DIL syntax = {protocols,roles,methods, events}

communication is point-to-point and components may only communicate with know acquaintances

Events sole mechanism for protocol/application interactions

The events monitored by an application and protocol define the interface between application and protocol

Each event has a default behavior representing the standard system response.

System events

Transmit

Deliver

Dispatch (complete is a customization of dispatch)

Protocol (represents parameters through state defined at the protocol level)

Parameters

support sharing of initialization data throughout the protocol

parameters may only be assigned when protocol is initialized

the parameters are really needed ?

Protocol operations

Define operations performed on the protocol

govern global actions on the protocol itself

may be invoked to assign roles to components

there are no formal restrictions on the structure of the operations

Actors may assume a role in a protocol only in protocol operations

Roles

define local behavior and event responses

define the customized communication behavior imposed on participants in the protocol

customizations (expressed as actions for handling events) affect only communications with other participants in the protocol

may also define methods

Role assumption is controlled through protocol operations

Role = {name, state definition, methods, events}

The state is local to each instance of the role. i.e. a separate copy of the state is created each time a component assumes a role

Methods and event handlers defined in a role may manipulate role state

Implementation approach (bottom-up) restricted to C++ with limited scope

in-order communication implemented as explicit synchronous communication. Similar function to Connectors in ASL

Atomicity is implemented as a compound of messages sent between the beginAction and endAction keywords.

Focus in fine-grain customization on a per -object basis

Do not explain how composition takes place in communication customization

customization implemented as first-class object

meta-level architecture = {communication customization, state manipulation primitives}

meta-level operators allow only manipulation of a base object's state as a black box entity (i.e. unnecessary modification of individual values in an actor state)

Use reflection to customize the transmission and reception behavior of a component

Communicator

Communication meta-level actor

provides a representation of both the actor's dispatch and reception behaviors (i.e. Allows communication customization)

when installed, serves as the (customized and transparent) mail queue for its base-level actor

methods (interface run-time system - communicator)

Dispatch (retrieve the next message)

Deliver (enqueue a new message)

Transmit (redefines the Tx behavior)

Since message transmission and message reception behaviors are usually a function of the same state, using a single meta-level actor to represent the communication system eliminates issues of state consistency

use address to bind a communicator to a base-actor through, then address can be modified dynamically to install a new protocol

To handle systems events, each communicator maintains a membership list of the other participants in the protocol. Thus, this list must be updated atomically between all participants to ensure consistent installation of a protocol.

State operators

reifyState

It creates a manipulable, first-class representation of an actor's behavior without requiring to know the behavior of the actor (i.e. snapshot of the base level actor and their meta-actors (if exist))

the internals of the representation structure may not be accessed

the operation exists only to enable copying, logging and restoration of actors.

It must not only return the state of the communicator's base-actor, but also the state of all actors below it in the meta-level hierarchy. Thus, it is a recursive structure

reflectState

It takes the result of a reifyState call and reflects the state onto an actor

Translation of a protocol consist

converting role definitions into communicator class definitions (i.e. Each role is translated into an individual communicator class)

Constructing a manager actor class

Handle protocol parameters, methods and role assumption

instantiates communication objects

Role assumption

consist 2 operation

Installation of a new communicator implementing the role on the participant

Atomic update of the participant list at each communicator involved in the protocol

The atomic update must be atomic with respect to other role assumptions and to all messages sent between participants

To handle role assumption, each node includes a ProtocolControl actor, which handles and executes requests to update a communicator's participant list

AtomicInstall protocol

Based on a modified two-phase commit protocol

Makes 4 assumptions

Role assumption is rare when compared to message communication between actors (avoid any overhead on the majority of message traffic)

The protocol is designed to handle no more than 32 participants in the protocol

The protocol assumes FIFO channels connecting nodes and that there is at most one channel directed each way connecting each node

Nodes do not crash

If any of these assumptions do not hold, the protocol may be restructured without modification of the protocol Control actors as long as the specified interface is maintained

Implementation

goal -> to develop a system where protocols expressed as communicators provide comparable performance to the same protocols hard-coded into applications

Broadway provides C++ support for distributed actor programs including asynchronous communication, dynamic actor creation and scheduling of actors

Each actor is implemented as a C++ object

Exist a root actor

Only one method may be active for a single actor: there is no internal concurrency

Although RPC communication is not developed in the basic Actor model, RPC is easily reconciled with actor semantics through a syntactic transformation

Each RPC may converted into two asynchronous sends, an additional method serving as the continuation of the invoking method and a synchronization constraint disabling all methods except the continuation method

The transformation is easily achieved through use of an actor language compiler. However, Broadway uses run-time technology to achieve the same result

Each RPC blocks the thread executing the current method. User threads have been implemented using the QuickThreads package

Inlcudes a library of system actors (i/o and file system interface, failure detector and migration controler)

The failure detector uses a watch-dog timer approach

One migration controller actor is created on each node and the mail addresses of these actors are know universally.

For actor migration and remote creation.

A buffer (an actor which never process its messages) is created on the local node

A message is sent to the remote migration controller with the identity of the actor's class and address (if migration, also includes state representation)

The remote migration controller creates the actor

a message is send to the (local) migration controller to remove the buffer and forward all messages it has received

Any additional messages received for the buffer are automatically forwarded to remote node

Broadway name resolution subsystem will ensure that eventually each node knows the actual location of the new actor

Conceptually, the base actor and communicator should be viewed as a single component in the system. Thus Broadway requires communication to be local

Rename communicators with the mail address of the base actor upon installation

When renaming communicators, the binding of the original name is also preserved. Thus after communicator installation, two actor addresses will refer to the communicator

Schedule an actor and its meta-level actor as a single entity

 Meta-level architecture

Computational -> compile

Structural -> individual

Modular Specification of Interaction Policies in Distributed Computing

[Sturman 96]

