next up previous
Next: About this document ...

CLASS #18: THE SOLOW GROWTH MODEL
Mechanics of the Solow growth model.
Assumptions: From the definition of investment:

\begin{displaymath}K_{t+1}=(1-\delta)K_t+I_t \end{displaymath}


\begin{displaymath}=(1-\delta)K_t+sY_t\end{displaymath}

Divide both sides by N and obtain:

\begin{displaymath}k_{t+1}=(1-\delta)k_t+sAk_t^\alpha\end{displaymath}

or

kt+1=f(kt).

This is a non-linear difference equation: strange object! Let us study the function $f(k)=(1-\delta)k+sAk^\alpha$:
1) f(0)=0

2) $\lim_{k\rightarrow\infty} f(k)=\infty$

3) $f'(k)=(1-\delta)+sA\alpha k^{\alpha-1}>0$,

4) $\lim_{k\rightarrow \infty} f'(k)=(1-\delta)<1$,
$\lim_{k\rightarrow 0} f'(k)=\infty>1$

5) $f''(k)=sA\alpha(\alpha-1)k^{\alpha-2}<0$ Consider population growth at a rate $\lambda$:

\begin{displaymath}N_{t+1}=(1+\lambda)N_t\end{displaymath}

divide both sides of

\begin{displaymath}K_{t+1}=(1-\delta)K_t+sY_t\end{displaymath}

by Nt and obtain:

\begin{displaymath}(1+\lambda)k_{t+1}=(1-\delta)k_t+sAk_t^\alpha\end{displaymath}

or

\begin{displaymath}k_{t+1}=\frac{1-\delta}{1+\lambda}k_t+\frac{sA}{1+\lambda}k_t^\alpha\end{displaymath}

This model does not explain sustained growth - in the next class we will introduce technological progress.

 
next up previous
Next: About this document ...
Marco Del Negro
2000-02-28