next up previous
Next: About this document ...

CLASS 1: ASSET PRICING AND FORWARD LOOKING BEHAVIOR

Asset pricing in a simple finite period model (Lucas' Cows -Trees- Model)

Assumptions:

The household's problem


\begin{displaymath}max_{c_0,c_1,c_2,s_0,s_1} u(c_0)+\beta u(c_1)+ \beta^2 u(c_2)\end{displaymath}

subject to:

\begin{displaymath}q_0 s_0+c_0 \leq (q_0+d_0)1\end{displaymath}


\begin{displaymath}q_1 s_1+c_1 \leq (q_1+d_1)s_0\end{displaymath}


\begin{displaymath}c_2 \leq d_2 s_1\end{displaymath}


in equilibrium all three constraints will hold with = sign, so we can substitute the constraint in the objective function:
$\begin{array}{l} max_{s_0,s_1}\\
u((q_0+d_0)1-q_0 s_0)+\beta u((q_1+d_1)s_0-q_1 s_1)+ \beta^2 u(d_2 s_1) \end{array}$

The first order condition (FOC) with respect to s0 is:

\begin{displaymath}u'(c_0)q_0=\beta u'(c_1) (q_1+d_1)\end{displaymath}


notice that this is a marginal condition: keeping s1 and s-1 fixed, the household can raise its utility by changing s0 (consuming more or less in period 0 and 1)
it can be rewritten as:

\begin{displaymath}\frac{u'(c_0)}{\beta u'(c_1)}=\frac{q_1+d_1}{q_0}=1+\frac{q_1-q_0}{q_0}+\frac{d_1}{q_0}\end{displaymath}

interpretation: marginal Rate of substitution (MRS) = marginal rate of transformation (MRT)
MRT=1+ capital gain + dividend payment

the second FOC (with respect to S1) is:

\begin{displaymath}u'(c_1)q_1=\beta u'(c_2) d_2\end{displaymath}

The two FOC's combined give:

\begin{displaymath}u'(c_0)q_0=\beta u'(c_1) d_1+\beta^2 u'(c_2) d_2\end{displaymath}

or

\begin{displaymath}q_0=\frac{\beta u'(c_1)}{u'(c_0)} d_1+\frac{\beta^2 u'(c_2)}{u'(c_0)}d_2\end{displaymath}

In other words, we have an equation that gives us the price of the asset (cow-stock)

General equilibrium

in each period ct=dt (nothing else but cows in this economy); so the pricing formula becomes:

\begin{displaymath}q_0=\frac{\beta u'(d_1)}{u'(d_0)} d_1+\frac{\beta^2 u'(d_2)}{u'(d_0)}d_2\end{displaymath}

in particular, if dividends are constant over time (dt=d all t):

\begin{displaymath}q_0=\beta d+\beta^2 d\end{displaymath}

ASSET PRICING IN AN INFINITE HORIZON MODEL

Assumptions:


\begin{displaymath}max_{{c_t}_{t=0}^\infty} \sum_{t=0}^\infty \beta^t u(c_t)\end{displaymath}

subject to the budget constraint (which holds in each period t):

\begin{displaymath}q_t s_t+c_t \leq (q_t+d_t)s_{t-1}\end{displaymath}

as before, in equilibrium all these constraints will hold with = sign, so we can substitute the constraint in the objective function:

\begin{displaymath}max_{{s_t}_{t=0}^\infty} \sum_{t=0}^\infty \beta^t
u((q_t+d_t)s_{t-1}-q_t s_t)\end{displaymath}

Let us focus on the first order condition (FOC) with respect to st
Notice that the term st appears in the sum above only in the two terms:

\begin{displaymath}\beta^t u((q_t+d_t)s_{t-1}-q_t s_t) +
\beta^{t+1} u((q_{t+1}+d_{t+1})s_t-q_{t+1} s_{t+1})\end{displaymath}

so the first order condition is:

\begin{displaymath}\beta^t u'(c_t)q_t=\beta^{t+1} u'(c_{t+1}) (q_{t+1}+d_{t+1})\end{displaymath}

which can be rewritten as:

\begin{displaymath}u'(c_t)q_t=\beta u'(c_{t+1}) (q_{t+1}+d_{t+1})\end{displaymath}

again, this is the marginal condition (a necessary but not sufficient condition for optimality) from period t to t+1.

let us write the same condition for period t+1:

\begin{displaymath}u'(c_{t+1})q_{t+1}=\beta u'(c_{t+2}) (q_{t+2}+d_{t+2})\end{displaymath}

, and substitute for u'(ct+1)qt+1 in the previous expression. we obtain:
$\begin{array}{lll}
u'(c_t)q_t & = &\beta u'(c_{t+1}) d_{t+1}
+\beta^2 u'(c_{t+...
...um_{i=1}^2 \beta^i u'(c_{t+i}) d_{t+i} +\beta^2 u'(c_{t+2}) q_{t+2}
\end{array}$

following the same logic, we can write the FOC for periods t+2,..,t+T, and substitute again and again for u'(ct+2) qt+2,u'(ct+2) qt+2,....
this way we obtain the following expression:

\begin{displaymath}u'(c_t)q_t=
\sum_{i=1}^T \beta^i u'(c_{t+i}) d_{t+i} +\beta^T u'(c_{t+T}) q_{t+T}\end{displaymath}

which can be rewritten as:

\begin{displaymath}q_t=
\sum_{i=1}^T \beta^i \frac{u'(c_{t+i})}{u'(c_t)} d_{t+i}
+\beta^T \frac{u'(c_{t+T})}{u'(c_t)} q_{t+T}\end{displaymath}


What happens to the right hand side of this expression as we let $T \rightarrow \infty$?

If it is true that $lim_{T \rightarrow \infty} \beta^T \frac{u'(c_{t+T})}{u'(c_t)} q_{t+T}=0$, then we obtain:

\begin{displaymath}q_t=\sum_{i=1}^{\infty} \beta^i \frac{u'(c_{t+i})}{u'(c_t)} d_{t+i}\end{displaymath}

the condition

\begin{displaymath}lim_{T \rightarrow \infty} \beta^T \frac{u'(c_{t+T})}{u'(c_t)} q_{t+T}=0\end{displaymath}

is called transversality condition. let us postpone the discussion of why the transversality condition holds, and focus on the interpretation of the above expression.


\begin{displaymath}q_t=\sum_{i=1}^{\infty} \beta^i \frac{u'(c_{t+i})}{u'(c_t)} d_{t+i}\end{displaymath}


the above expression says that:

Equilibrium

in equilibrium it must be that in each period ct=dt (nothing else but stocks in this economy) and that st=1

the pricing formula then becomes:

\begin{displaymath}q_t=\sum_{i=1}^{\infty} \beta^i \frac{u'(d_{t+i})}{u'(d_t)} d_{t+i}\end{displaymath}

in particular, if dividends are constant over time (dt=d all t):

\begin{displaymath}q_t=\frac{\beta}{1-\beta} d\end{displaymath}

comparative statics: in an economy where people are less impatient (higher $\beta$) the value of stocks is higher: people want to save more, but since the quantity of stocks (trees, cows) is given, the desire to save more simply bids the price of the stock up.

we can now discuss why the transversality condition must hold in this model:

\begin{displaymath}lim_{T \rightarrow \infty} \beta^T \frac{u'(c_{t+T})}{u'(c_t)} q_{t+T}=0\end{displaymath}

next time: pricing of durable goods

references:



 
next up previous
Next: About this document ...
Marco Del Negro
2000-01-10